Suppr超能文献

Validation of rapid velocity encoded cine imaging of a dynamically complex flow field using turbo block regional interpolation scheme for k space.

作者信息

Kortright E, Doyle M, Anayiotos A S, Walsh E G, Fuisz A R, Pohost G M

机构信息

Computer Science Department, University of New Orleans, LA 70148, USA.

出版信息

Ann Biomed Eng. 2001 Feb;29(2):128-34. doi: 10.1114/1.1349702.

Abstract

Block regional interpolation scheme for k space (BRISK) is a sparse sampling approach to allow rapid magnetic resonance imaging of dynamic events. Rapid velocity encoded cine (VEC) imaging with Turbo BRISK is potentially an important clinical diagnostic technique for cardiovascular diseases. Previously we applied BRISK and Turbo BRISK to imaging pulsatile flow in a straight tube. To evaluate the capabilities of Turbo BRISK imaging in more complex dynamic flow fields such as might exist in the human vasculature, an in vitro curved tube model, similar in geometry to the aortic arch, was fabricated and imaged under pulsatile flow conditions. Velocity maps were obtained using conventional VEC and Turbo BRISK (turbo factors 1 through 5). Comparison of the flow fields obtained with each higher order turbo factor showed excellent agreement with conventional VEC with minimal loss of information. Similarly, flow maps showed good agreement with the profiles from a laser Doppler velocimetry model. Turbo-5 BRISK, for example, allowed a 94% savings in imaging time, reducing the conventional imaging time from over 8 min to a near breath-hold imaging period of 31 s. Turbo BRISK shows excellent promise toward the development of a clinical tool to evaluate complex dynamic intravascular flow fields.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验