Norris D, McQueen J M, Cutler A
Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 2EF, United Kingdom. dennis.norris@.mrc-cbu.cam.ac.uk
Behav Brain Sci. 2000 Jun;23(3):299-325; discussion 325-70. doi: 10.1017/s0140525x00003241.
Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The modular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
自上而下的反馈对语音识别并无益处;相反,它可能会阻碍语音识别。没有实验数据表明语音识别需要反馈回路。因此,反馈是不必要的,并且口语单词识别是模块化的。为了捍卫这一论点,我们分析了词汇在音素决策中的作用。TRACE模型(麦克莱兰和埃尔曼,1986年)是一个具有从词汇到词汇前过程反馈的模型,但它无法解释所有关于音素决策的现有数据。模块化的Race模型(卡特勒和诺里斯,1979年)同样也受到了一些最新研究结果的挑战。因此,我们提出了一种新的音素决策模块化模型——合并模型。在合并模型中,信息从词汇前过程流向词汇,没有反馈。由于音素决策是基于词汇前信息和词汇信息的合并,合并模型正确地预测了词汇在单词和非单词音素决策中的作用。计算机模拟展示了合并模型如何通过词汇假设之间的竞争过程来解释这些数据。我们讨论了语言处理其他领域中的反馈问题,并得出结论,模块化模型特别适合语音识别的问题和限制。