Climo M W, Ehlert K, Archer G L
Department of Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, USA.
Antimicrob Agents Chemother. 2001 May;45(5):1431-7. doi: 10.1128/AAC.45.5.1431-1437.2001.
The potential for the development of resistance in oxacillin-resistant Staphylococcus aureus (ORSA) to lysostaphin, a glycylglycine endopeptidase produced by Staphylococcus simulans biovar staphylolyticus, was examined in vitro and in an in vivo model of infection. Following in vitro exposure of ORSA to subinhibitory concentrations of lysostaphin, lysostaphin-resistant mutants were idenitifed among all isolates examined. Resistance to lysostaphin was associated with a loss of resistance to beta-lactams and a change in the muropeptide interpeptide cross bridge from pentaglycine to a single glycine. Mutations in femA, the gene required for incorporation of the second and third glycines into the cross bridge, were found following PCR amplification and nucleotide sequence analysis. Complementation of lysostaphin-resistant mutants with pBBB31, which encodes femA, restored the phenotype of oxacillin resistance and lysostaphin susceptibility. Addition of beta-lactam antibiotics to lysostaphin in vitro prevented the development of lysostaphin-resistant mutants. In the rabbit model of experimental endocarditis, administration of a low dose of lysostaphin for 3 days led predictably to the appearance of lysostaphin-resistant ORSA mutants in vegetations. Coadministration of nafcillin with lysostaphin prevented the emergence of lysostaphin-resistant mutants and led to a mean reduction in aortic valve vegetation counts of 7.5 log(10) CFU/g compared to those for untreated controls and eliminated the isolation of lysostaphin-resistant mutants from aortic valve vegetations. Treatment with nafcillin and lysostaphin given alone led to mean reductions of 1.35 and 1.65 log(10) CFU/g respectively. In ORSA, resistance to lysostaphin was associated with mutations in femA, but resistance could be suppressed by the coadministration of beta-lactam antibiotics.
在体外和感染的体内模型中,研究了耐苯唑西林金黄色葡萄球菌(ORSA)对溶葡萄球菌素(一种由模仿葡萄球菌生物变种溶葡萄球菌产生的甘氨酰甘氨酸内肽酶)产生耐药性的可能性。在体外将ORSA暴露于亚抑制浓度的溶葡萄球菌素后,在所检测的所有分离株中均鉴定出了耐溶葡萄球菌素的突变体。对溶葡萄球菌素的耐药性与对β-内酰胺类抗生素耐药性的丧失以及肽聚糖间肽交联桥从五肽甘氨酸变为单个甘氨酸有关。经过聚合酶链反应(PCR)扩增和核苷酸序列分析,发现负责将第二和第三个甘氨酸掺入交联桥的femA基因发生了突变。用编码femA的pBBB31对耐溶葡萄球菌素的突变体进行互补,恢复了苯唑西林耐药性和溶葡萄球菌素敏感性的表型。在体外将β-内酰胺类抗生素添加到溶葡萄球菌素中可防止耐溶葡萄球菌素突变体的产生。在兔实验性心内膜炎模型中,低剂量的溶葡萄球菌素给药3天可预测地导致赘生物中出现耐溶葡萄球菌素的ORSA突变体。萘夫西林与溶葡萄球菌素联合给药可防止耐溶葡萄球菌素突变体的出现,并使主动脉瓣赘生物计数平均比未治疗的对照组减少7.5 log(10) CFU/g,且消除了从主动脉瓣赘生物中分离出耐溶葡萄球菌素突变体的情况。单独使用萘夫西林和溶葡萄球菌素治疗分别使赘生物计数平均减少1.35和1.65 log(10) CFU/g。在ORSA中,对溶葡萄球菌素的耐药性与femA基因突变有关,但β-内酰胺类抗生素联合给药可抑制耐药性。