Pons T, Hernández L, Batista F R, Chinea G
Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
Protein Sci. 2000 Nov;9(11):2285-91. doi: 10.1110/ps.9.11.2285.
The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family.
果聚糖生物合成酶的三维(3D)结构仍然未知。在此,我们探索了已报道的催化转果糖基化反应的微生物和植物酶之间的折叠相似性。使用TOPITS、SDP、3D-PSSM和SAM-T98程序进行的序列-结构兼容性搜索,识别出一种β-螺旋桨折叠,其得分高于置信阈值,表明在不同来源和底物特异性的果糖基转移酶(FTF)中存在结构保守的催化结构域。预测的折叠似乎分别与糖苷水解酶家族33和34的神经氨酸酶和唾液酸酶的折叠相关。使用神经氨酸酶的晶体结构(蛋白质数据库文件:5nn9)作为模板获得了最可靠的结构模型,并且它与先前鉴定的细菌果聚糖蔗糖酶功能残基的位置一致(Batista等人,1999年;Song和Jacques,1999年)。此处呈现的序列-序列分析强化了最近将真菌和植物FTF纳入糖苷水解酶家族32的观点,并为此家族提出了一种修改后的序列模式H-x(2)-[PTV]-x(4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3。