Ordemann A, Porto M, Eduardo Roman H, Havlin S
Institut für Theoretische Physik III, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):020104. doi: 10.1103/PhysRevE.63.020104. Epub 2001 Jan 24.
We study the asymptotic shape of self-avoiding random walks (SAW) on the backbone of the incipient percolation cluster in d-dimensional lattices analytically. It is generally accepted that the configurational averaged probability distribution function <P(B)(r,N)> for the end-to-end distance r of an N step SAW behaves as a power law for r-->0. In this work, we determine the corresponding exponent using scaling arguments, and show that our suggested "generalized des Cloizeaux" expression for the exponent is in excellent agreement with exact enumeration results in two and three dimensions.
我们通过解析方法研究了(d)维晶格中初渗簇骨干上的自回避随机游走(SAW)的渐近形状。人们普遍认为,对于(N)步SAW的端到端距离(r),构型平均概率分布函数(<P(B)(r,N)>)在(r \to 0)时表现为幂律。在这项工作中,我们使用标度论证确定了相应的指数,并表明我们提出的指数的“广义德克洛佐”表达式与二维和三维的精确枚举结果非常吻合。