Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100920, D-04009 Leipzig, Germany.
Phys Rev Lett. 2014 Dec 19;113(25):255701. doi: 10.1103/PhysRevLett.113.255701.
We study self-avoiding walks on three-dimensional critical percolation clusters using a new exact enumeration method. It overcomes the exponential increase in computation time by exploiting the clusters' fractal nature. We enumerate walks of over 10^{4} steps, far more than has ever been possible. The scaling exponent ν for the end-to-end distance turns out to be smaller than previously thought and appears to be the same on the backbones as on full clusters. We find strong evidence against the widely assumed scaling law for the number of conformations and propose an alternative, which perfectly fits our data.
我们使用一种新的精确枚举方法研究了三维临界渗流团上的自回避行走。它利用了团簇的分形性质,克服了计算时间的指数增长。我们枚举了超过 10^{4}步的行走,这比以往任何时候都要多。末端到末端距离的标度指数 ν 比以前认为的要小,并且似乎在骨干上与整个团簇上相同。我们有强有力的证据反对广泛假设的构象数量的标度定律,并提出了一种替代方案,该方案完全适合我们的数据。