物理、化学和生物学中的聚合物:分形结构中线性聚合物的行为
Polymers in Physics, Chemistry and Biology: Behavior of Linear Polymers in Fractal Structures.
作者信息
Roman Hector Eduardo
机构信息
Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy.
出版信息
Polymers (Basel). 2024 Dec 2;16(23):3400. doi: 10.3390/polym16233400.
We start presenting an overview on recent applications of linear polymers and networks in condensed matter physics, chemistry and biology by briefly discussing selected papers (published within 2022-2024) in some detail. They are organized into three main subsections: polymers in physics (further subdivided into simulations of coarse-grained models and structural properties of materials), chemistry (quantum mechanical calculations, environmental issues and rheological properties of viscoelastic composites) and biology (macromolecules, proteins and biomedical applications). The core of the work is devoted to a review of theoretical aspects of linear polymers, with emphasis on self-avoiding walk (SAW) chains, in regular lattices and in both deterministic and random fractal structures. Values of critical exponents describing the structure of SAWs in different environments are updated whenever available. The case of random fractal structures is modeled by percolation clusters at criticality, and the issue of multifractality, which is typical of these complex systems, is illustrated. Applications of these models are suggested, and references to known results in the literature are provided. A detailed discussion of the reptation method and its many interesting applications are provided. The problem of protein folding and protein evolution are also considered, and the key issues and open questions are highlighted. We include an experimental section on polymers which introduces the most relevant aspects of linear polymers relevant to this work. The last two sections are dedicated to applications, one in materials science, such as fractal features of plasma-treated polymeric materials surfaces and the growth of polymer thin films, and a second one in biology, by considering among others long linear polymers, such as DNA, confined within a finite domain.
我们首先通过详细简要讨论一些精选论文(2022年至2024年发表),对线性聚合物和网络在凝聚态物理、化学和生物学中的最新应用进行概述。这些论文分为三个主要子部分:物理学中的聚合物(进一步细分为粗粒化模型的模拟和材料的结构特性)、化学(量子力学计算、环境问题和粘弹性复合材料的流变特性)和生物学(大分子、蛋白质和生物医学应用)。这项工作的核心致力于对线性聚合物的理论方面进行综述,重点是规则晶格以及确定性和随机分形结构中的自回避行走(SAW)链。只要有可用数据,就会更新描述不同环境中SAW结构的临界指数值。随机分形结构的情况通过临界渗流簇进行建模,并说明了这些复杂系统典型的多重分形问题。提出了这些模型的应用,并提供了文献中已知结果的参考文献。提供了对蛇行方法及其许多有趣应用的详细讨论。还考虑了蛋白质折叠和蛋白质进化问题,并突出了关键问题和未解决的问题。我们包括一个关于聚合物的实验部分,介绍了与这项工作相关的线性聚合物的最相关方面。最后两个部分专门讨论应用,一个是在材料科学方面,例如等离子体处理聚合物材料表面的分形特征和聚合物薄膜的生长,另一个是在生物学方面,例如考虑限制在有限域内的长线性聚合物,如DNA。