Carretero J, Obrador E, Esteve J M, Ortega A, Pellicer J A, Sempere F V, Estrela J M
Departamento de Fisiologia, Universidad de Valencia, and the Servicio de Anatomia Patológica, Hospital Universitario La Fe, Valencia, Spain.
J Biol Chem. 2001 Jul 13;276(28):25775-82. doi: 10.1074/jbc.M101148200. Epub 2001 Apr 19.
The mechanism of NO- and H(2)O(2)-induced tumor cytotoxicity was examined during B16 melanoma (B16M) adhesion to the hepatic sinusoidal endothelium (HSE) in vitro. We used endothelial nitric-oxide synthetase gene disruption and N(G)-nitro-l-arginine methyl ester-induced inhibition of nitric-oxide synthetase activity to study the effect of HSE-derived NO on B16M cell viability. Extracellular H(2)O(2) was removed by exogenous catalase. H(2)O(2) was not cytotoxic in the absence of NO. However, NO-induced tumor cytotoxicity was increased by H(2)O(2) due to the formation of potent oxidants, likely ( small middle dot)OH and (-)OONO radicals, via a trace metal-dependent process. B16M cells cultured to low density (LD cells), with high GSH content, were more resistant to NO and H(2)O(2) than B16M cells cultured to high density (HD cells; with approximately 25% of the GSH content found in LD cells). Resistance of LD cells decreased using buthionine sulfoximine, a specific GSH synthesis inhibitor, whereas resistance increased in HD cells using GSH ester, which delivers free intracellular GSH. Because NO and H(2)O(2) were particularly cytotoxic in HD cells, we investigated the enzyme activities that degrade H(2)O(2). NO and H(2)O(2) caused an approximately 75% (LD cells) and a 60% (HD cells) decrease in catalase activity without affecting the GSH peroxidase/GSH reductase system. Therefore, B16M resistance to the HSE-induced cytotoxicity appears highly dependent on GSH and GSH peroxidase, which are both required to eliminate H(2)O(2). In agreement with this fact, ebselen, a GSH peroxidase mimic, abrogated the increase in NO toxicity induced by H(2)O(2).
在体外研究B16黑色素瘤(B16M)细胞黏附于肝窦内皮细胞(HSE)的过程中,检测了一氧化氮(NO)和过氧化氢(H₂O₂)诱导肿瘤细胞毒性的机制。我们利用内皮型一氧化氮合酶基因敲除以及N⁰-硝基-L-精氨酸甲酯诱导的一氧化氮合酶活性抑制,来研究HSE来源的NO对B16M细胞活力的影响。通过外源性过氧化氢酶去除细胞外的H₂O₂。在没有NO的情况下,H₂O₂没有细胞毒性。然而,由于通过微量金属依赖性过程形成了强氧化剂,可能是羟基自由基(·OH)和过氧亚硝酸根自由基(⁻OONO),H₂O₂会增强NO诱导的肿瘤细胞毒性。低密度培养(LD细胞)且谷胱甘肽(GSH)含量高的B16M细胞比高密度培养(HD细胞;其GSH含量约为LD细胞的25%)的B16M细胞对NO和H₂O₂更具抗性。使用丁硫氨酸亚砜胺(一种特异性GSH合成抑制剂)会降低LD细胞的抗性,而使用能提供游离细胞内GSH的GSH酯则会增加HD细胞的抗性。由于NO和H₂O₂对HD细胞具有特别的细胞毒性,我们研究了降解H₂O₂的酶活性。NO和H₂O₂使过氧化氢酶活性分别降低约75%(LD细胞)和60%(HD细胞),而不影响谷胱甘肽过氧化物酶/谷胱甘肽还原酶系统。因此,B16M对HSE诱导的细胞毒性的抗性似乎高度依赖于GSH和谷胱甘肽过氧化物酶,二者都是清除H₂O₂所必需的。与此事实相符的是,一种谷胱甘肽过氧化物酶模拟物依布硒仑消除了H₂O₂诱导的NO毒性增加。