Mau B, Newton M A, Larget B
Department of Statistics, University of Wisconsin-Madison, 53706-1685, USA.
Biometrics. 1999 Mar;55(1):1-12. doi: 10.1111/j.0006-341x.1999.00001.x.
We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix form suggests a simple and effective proposal distribution for selecting candidate trees close to the current tree in the chain. We illustrate the algorithm with restriction site data on 9 plant species, then extend to DNA sequences from 32 species of fish. The algorithm mixes well in both examples from random starting trees, generating reproducible estimates and credible sets for the path of evolution.
给定来自相应生物集合的序列信息、这些数据的随机模型以及树空间上的先验分布,我们推导了一个马尔可夫链,以便从系统发育树的后验分布中进行采样。将树转换为规范的共亲矩阵形式,这为在链中选择接近当前树的候选树提出了一种简单有效的提议分布。我们用9种植物的限制性酶切位点数据说明了该算法,然后将其扩展到32种鱼类的DNA序列。在这两个例子中,该算法从随机起始树开始都能很好地混合,为进化路径生成可重复的估计值和可信集。