Shafirovich V, Dourandin A, Huang W, Geacintov N E
Chemistry Department, Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, NY 10003-5180, USA.
J Biol Chem. 2001 Jul 6;276(27):24621-6. doi: 10.1074/jbc.M101131200. Epub 2001 Apr 24.
The carbonate radical anion (CO(3)) is believed to be an important intermediate oxidant derived from the oxidation of bicarbonate anions and nitrosoperoxocarboxylate anions (formed in the reaction of CO(2) with ONOO(-)) in cellular environments. Employing nanosecond laser flash photolysis methods, we show that the CO(3) anion can selectively oxidize guanines in the self-complementary oligonucleotide duplex d(AACGCGAATTCGCGTT) dissolved in air-equilibrated aqueous buffer solution (pH 7.5). In these time-resolved transient absorbance experiments, the CO(3) radicals are generated by one-electron oxidation of the bicarbonate anions (HCO(3)(-)) with sulfate radical anions (SO(4)) that, in turn, are derived from the photodissociation of persulfate anions (S(2)O(8)(2-)) initiated by 308-nm XeCl excimer laser pulse excitation. The kinetics of the CO(3) anion and neutral guanine radicals, G(-H)( small middle dot), arising from the rapid deprotonation of the guanine radical cation, are monitored via their transient absorption spectra (characteristic maxima at 600 and 315 nm, respectively) on time scales of microseconds to seconds. The bimolecular rate constant of oxidation of guanine in this oligonucleotide duplex by CO(3) is (1.9 +/- 0.2) x 10(7) m(-1) s(-1). The decay of the CO(3) anions and the formation of G(-H)( small middle dot) radicals are correlated with one another on the millisecond time scale, whereas the neutral guanine radicals decay on time scales of seconds. Alkali-labile guanine lesions are produced and are revealed by treatment of the irradiated oligonucleotides in hot piperidine solution. The DNA fragments thus formed are identified by a standard polyacrylamide gel electrophoresis assay, showing that strand cleavage occurs at the guanine sites only. The biological implications of these oxidative processes are discussed.
碳酸根阴离子(CO₃)被认为是细胞环境中由碳酸氢根阴离子和亚硝基过氧羧酸根阴离子(由CO₂与ONOO⁻反应形成)氧化产生的一种重要的中间氧化剂。采用纳秒激光闪光光解方法,我们表明CO₃阴离子可以选择性地氧化溶解在空气平衡的水性缓冲溶液(pH 7.5)中的自互补寡核苷酸双链体d(AACGCGAATTCGCGTT)中的鸟嘌呤。在这些时间分辨的瞬态吸收实验中,CO₃自由基通过硫酸根阴离子(SO₄)对碳酸氢根阴离子(HCO₃⁻)的单电子氧化产生,而硫酸根阴离子又源自由308 nm XeCl准分子激光脉冲激发引发的过硫酸根阴离子(S₂O₈²⁻)的光解。通过它们在微秒到秒的时间尺度上的瞬态吸收光谱(分别在600和315 nm处有特征最大值)监测由鸟嘌呤自由基阳离子快速去质子化产生的CO₃阴离子和中性鸟嘌呤自由基G⁻ᴴ·的动力学。CO₃氧化该寡核苷酸双链体中鸟嘌呤的双分子速率常数为(1.9±0.2)×10⁷ m⁻¹ s⁻¹。CO₃阴离子的衰减和G⁻ᴴ·自由基的形成在毫秒时间尺度上相互关联,而中性鸟嘌呤自由基在秒时间尺度上衰减。产生了碱不稳定的鸟嘌呤损伤,并通过在热哌啶溶液中处理辐照的寡核苷酸来揭示。由此形成的DNA片段通过标准聚丙烯酰胺凝胶电泳分析进行鉴定,表明链断裂仅发生在鸟嘌呤位点。讨论了这些氧化过程的生物学意义。