Fragou Fotini, Theofanous Annita, Deligiannakis Yiannis, Louloudi Maria
Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
Micromachines (Basel). 2023 Feb 4;14(2):383. doi: 10.3390/mi14020383.
Oxidants are very active compounds that can cause damage to biological systems under specific environmental conditions. One effective way to counterbalance these adverse effects is the use of anti-oxidants. At low concentrations, an antioxidant is defined as a compound that can delay, control, or prevent an oxidative process. Antioxidants exist in plants, soil, and minerals; therefore, nature is a rich source of natural antioxidants, such as tocopherols and polyphenols. In nature, antioxidants perform with their bio-environment, which may tune their activity and protect them from degradation. In vitro use of antioxidants, i.e., out of their biomatrix, may encounter several drawbacks, such as auto-oxidation and polymerization. Artificial nanoantioxidants can be developed via surface modification of a nanoparticle with an antioxidant that can be either natural or synthetic, directly mimicking a natural antioxidant system. In this direction, state-of-the-art nanotechnology has been extensively incorporated to overcome inherent drawbacks encountered in vitro use of antioxidants, i.e., out of their biomatrix, and facilitate the production and use of antioxidants on a larger scale. Biomimetic nanoengineering has been adopted to optimize bio-medical antioxidant systems to improve stability, control release, enhance targeted administration, and overcome toxicity and biocompatibility issues. Focusing on biotechnological sciences, this review highlights the importance of nanoengineering in developing effective antioxidant structures and comparing the effectiveness of different nanoengineering methods. Additionally, this study gathers and clarifies the different antioxidant mechanisms reported in the literature and provides a clear picture of the existing evaluation methods, which can provide vital insights into bio-medical applications.
氧化剂是非常活跃的化合物,在特定环境条件下会对生物系统造成损害。抵消这些不利影响的一种有效方法是使用抗氧化剂。在低浓度下,抗氧化剂被定义为一种能够延迟、控制或防止氧化过程的化合物。抗氧化剂存在于植物、土壤和矿物质中;因此,自然界是天然抗氧化剂的丰富来源,如生育酚和多酚。在自然界中,抗氧化剂与其生物环境协同作用,这可能会调节它们的活性并保护它们不被降解。在体外使用抗氧化剂,即在其生物基质之外使用,可能会遇到一些缺点,如自动氧化和聚合反应。人工纳米抗氧化剂可以通过用天然或合成的抗氧化剂对纳米颗粒进行表面改性来开发,直接模拟天然抗氧化系统。在这个方向上,最先进的纳米技术已被广泛应用,以克服在体外使用抗氧化剂(即在其生物基质之外使用)时遇到的固有缺点,并促进抗氧化剂的大规模生产和使用。仿生纳米工程已被用于优化生物医学抗氧化系统,以提高稳定性、控制释放、增强靶向给药,并克服毒性和生物相容性问题。聚焦于生物技术科学,本综述强调了纳米工程在开发有效的抗氧化结构以及比较不同纳米工程方法有效性方面的重要性。此外,本研究收集并阐明了文献中报道的不同抗氧化机制,并提供了现有评估方法的清晰图景,这可为生物医学应用提供重要见解。