Gjetting T, Petersen M, Guldberg P, Güttler F
The John F. Kennedy Institute, DK-2600 Glostrup, Denmark.
Am J Hum Genet. 2001 Jun;68(6):1353-60. doi: 10.1086/320604. Epub 2001 Apr 20.
Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46-48 (GAL) and 65-69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2-120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency.
由于苯丙氨酸羟化酶(PAH)缺乏导致的高苯丙氨酸血症是一种常染色体隐性疾病,由PAH基因中的400多种突变引起。最近的研究表明,大多数PAH错义突变通过导致蛋白质稳定性增加和聚集而损害酶活性。在本研究中,我们描述了一些PAH突变可能使PAH有缺陷的另一种机制。通过数据库搜索来识别PAH N端结构域中与预苯酸脱水酶(PDH)调节结构域具有同源性的区域,PDH是细菌苯丙氨酸生物合成途径中的限速酶。天然存在的PAH N端突变以非随机模式分布,并聚集在46 - 48位残基(GAL)和65 - 69位残基(IESRP)内,这是PDH中两个高度保守的基序。为了研究PAH N端突变是否影响PAH在调节结构域结合苯丙氨酸的能力,将人PAH N端结构域(2 - 120位残基)的野生型和五种突变型(G46S、A47V、T63P/H64N、I65T和R68S)作为融合蛋白在大肠杆菌中表达。结合研究表明,该结构域的野生型形式特异性结合苯丙氨酸,而所有突变均消除或显著降低了这种苯丙氨酸结合能力。我们的数据表明,苯丙氨酸介导的PAH激活受损可能是一些PAH N端突变的重要致病机制,这可能解释了PAH缺乏症中一些有充分记录的基因型 - 表型差异。