Suppr超能文献

使用神经网络分类器检测慢性疲劳综合征的免疫相关重要因素。

Detection of immunologically significant factors for chronic fatigue syndrome using neural-network classifiers.

作者信息

Hanson S J, Gause W, Natelson B

机构信息

Department of Psychology, Rutgers University, Newark, New Jersey 07102, USA.

出版信息

Clin Diagn Lab Immunol. 2001 May;8(3):658-62. doi: 10.1128/CDLI.8.3.658-662.2001.

Abstract

Neural-network classifiers were used to detect immunological differences in groups of chronic fatigue syndrome (CFS) patients that heretofore had not shown significant differences from controls. In the past linear methods were unable to detect differences between CFS groups and non-CFS control groups in the nonveteran population. An examination of the cluster structure for 29 immunological factors revealed a complex, nonlinear decision surface. Multilayer neural networks showed an over 16% improvement in an n-fold resampling generalization test on unseen data. A sensitivity analysis of the network found differences between groups that are consistent with the hypothesis that CFS symptoms are a consequence of immune system dysregulation. Corresponding decreases in the CD19(+) B-cell compartment and the CD34(+) hematopoietic progenitor subpopulation were also detected by the neural network, consistent with the T-cell expansion. Of significant interest was the fact that, of all the cytokines evaluated, the only one to be in the final model was interleukin-4 (IL-4). Seeing an increase in IL-4 suggests a shift to a type 2 cytokine pattern. Such a shift has been hypothesized, but until now convincing evidence to support that hypothesis has been lacking.

摘要

神经网络分类器被用于检测慢性疲劳综合征(CFS)患者组之间的免疫学差异,而此前这些差异与对照组相比并不显著。过去,线性方法无法在非退伍军人人群中检测出CFS组与非CFS对照组之间的差异。对29种免疫因子的聚类结构进行检查后发现了一个复杂的非线性决策面。多层神经网络在对未见数据的n折重采样泛化测试中显示出超过16%的改进。对该网络的敏感性分析发现了组间差异,这与CFS症状是免疫系统失调所致的假设一致。神经网络还检测到CD19(+) B细胞区室和CD34(+)造血祖细胞亚群相应减少,这与T细胞扩增一致。特别值得关注的是,在所有评估的细胞因子中,最终模型中唯一出现的是白细胞介素-4(IL-4)。IL-4的增加表明向2型细胞因子模式转变。这种转变已有假设,但直到现在仍缺乏支持该假设的令人信服的证据。

相似文献

1
Detection of immunologically significant factors for chronic fatigue syndrome using neural-network classifiers.
Clin Diagn Lab Immunol. 2001 May;8(3):658-62. doi: 10.1128/CDLI.8.3.658-662.2001.
2
Longitudinal analysis of pro- and anti-inflammatory cytokine production in severely fatigued adolescents.
Brain Behav Immun. 2007 Nov;21(8):1063-74. doi: 10.1016/j.bbi.2007.04.007. Epub 2007 Jun 1.
4
[Chronic fatigue immune dysfunction syndrome].
Nihon Rinsho. 1992 Nov;50(11):2625-9.
5
Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach.
Biomed Pharmacother. 2019 Jan;109:1000-1007. doi: 10.1016/j.biopha.2018.10.076. Epub 2018 Nov 5.
7
High levels of type 2 cytokine-producing cells in chronic fatigue syndrome.
Clin Exp Immunol. 2004 Feb;135(2):294-302. doi: 10.1111/j.1365-2249.2004.02354.x.
8
Chronic fatigue syndrome and the immune system: Where are we now?
Neurophysiol Clin. 2017 Apr;47(2):131-138. doi: 10.1016/j.neucli.2017.02.002. Epub 2017 Apr 12.
9
Changes in immune parameters seen in Gulf War veterans but not in civilians with chronic fatigue syndrome.
Clin Diagn Lab Immunol. 1999 Jan;6(1):6-13. doi: 10.1128/CDLI.6.1.6-13.1999.
10
Immunological abnormalities in patients with chronic fatigue syndrome.
Scand J Immunol. 1994 Dec;40(6):601-8. doi: 10.1111/j.1365-3083.1994.tb03511.x.

引用本文的文献

3
Longitudinal associations of lymphocyte subsets with clinical outcomes in chronic fatigue syndrome.
Fatigue. 2018;6(2):80-91. doi: 10.1080/21641846.2018.1426371. Epub 2018 Jan 12.
5
Defining Essential Features of Myalgic Encephalomyelitis and Chronic Fatigue Syndrome.
J Hum Behav Soc Environ. 2015;25(6):657-674. doi: 10.1080/10911359.2015.1011256. Epub 2015 May 6.
6
Myalgic Encephalomyelitis: Symptoms and Biomarkers.
Curr Neuropharmacol. 2015;13(5):701-34. doi: 10.2174/1570159x13666150928105725.
7
Chronic Fatigue Syndrome and Myalgic Encephalomyelitis: Toward An Empirical Case Definition.
Health Psychol Behav Med. 2015;3(1):82-93. doi: 10.1080/21642850.2015.1014489.
8
An investigation of symptoms predating CFS onset.
J Prev Interv Community. 2015;43(1):54-61. doi: 10.1080/10852352.2014.973240.
9
Examining case definition criteria for chronic fatigue syndrome and myalgic encephalomyelitis.
Fatigue. 2014 Jan 1;2(1):40-56. doi: 10.1080/21641846.2013.862993.
10
Exercise and sleep deprivation do not change cytokine expression levels in patients with chronic fatigue syndrome.
Clin Vaccine Immunol. 2013 Nov;20(11):1736-42. doi: 10.1128/CVI.00527-13. Epub 2013 Sep 11.

本文引用的文献

1
Immunological response in chronic fatigue syndrome following a graded exercise test to exhaustion.
J Clin Immunol. 1999 Mar;19(2):135-42. doi: 10.1023/a:1020510718013.
2
Changes in immune parameters seen in Gulf War veterans but not in civilians with chronic fatigue syndrome.
Clin Diagn Lab Immunol. 1999 Jan;6(1):6-13. doi: 10.1128/CDLI.6.1.6-13.1999.
3
4
Immune responses associated with chronic fatigue syndrome: a case-control study.
J Infect Dis. 1997 Jan;175(1):136-41. doi: 10.1093/infdis/175.1.136.
5
Lymphocyte subsets, apoptosis, and cytokines in patients with chronic fatigue syndrome.
J Infect Dis. 1996 Feb;173(2):460-3. doi: 10.1093/infdis/173.2.460.
6
Lymphocyte phenotype and function in the chronic fatigue syndrome.
J Clin Immunol. 1993 Jan;13(1):30-40. doi: 10.1007/BF00920633.
7
The use of the PCR to quantitate gene expression.
PCR Methods Appl. 1994 Jun;3(6):S123-35. doi: 10.1101/gr.3.6.s123.
8
Immunologic abnormalities in chronic fatigue syndrome.
J Clin Microbiol. 1990 Jun;28(6):1403-10. doi: 10.1128/jcm.28.6.1403-1410.1990.
10
Chronic fatigue syndrome: clinical condition associated with immune activation.
Lancet. 1991 Sep 21;338(8769):707-12. doi: 10.1016/0140-6736(91)91440-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验