Grosset A M, Gibney B R, Rabanal F, Moser C C, Dutton P L
Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA.
Biochemistry. 2001 May 8;40(18):5474-87. doi: 10.1021/bi002504f.
New understanding of the engineering and allosteric regulation of natural protein conformational switches (such as those that couple chemical and ionic signals, mechanical force, and electro/chemical free energy for biochemical activation, catalysis, and motion) can be derived from simple de novo designed synthetic protein models (maquettes). We demonstrate proof of principle of both reversible switch action and allosteric regulation in a tetra-alpha-helical bundle protein composed of two identical di-helical subunits containing heme coordinated at a specific position close to the disulfide loop region. Individual bundles assume one of two switch states related by large-scale mechanical changes: a syn-topology (helices of the different subunits parallel) or anti-topology (helices antiparallel). Both the spectral properties of a coproporphyrin probe appended to the loop region and the distance-dependent redox interaction between the hemes identify the topologies. Beginning from a syn-topology, introduction of ferric heme in each subunit (either binding or redox change) shifts the topological balance by 25-50-fold (1.9-2.3 kcal/mol) to an anti-dominance. Charge repulsion between the two internal cationic ferric hemes drives the syn- to anti-switch, as demonstrated in two ways. When fixed in the syn-topology, the second ferric heme binding is 25-80-fold (1.9-2.6 kcal/mol) weaker than the first, and adjacent heme redox potentials are split by 80 mV (1.85 kcal/mol), values that energetically match the shift in topological balance. Allosteric and cooperative regulation of the switch by ionic strength exploits the shielded charge interactions between the two hemes and the exposed, cooperative interactions between the coproporphyrin carboxylates.
通过简单的从头设计合成蛋白质模型(小样),可以获得对天然蛋白质构象开关(如那些将化学和离子信号、机械力以及电化学自由能耦合用于生化激活、催化和运动的开关)的工程学和变构调节的新认识。我们在一个由两个相同的双螺旋亚基组成的四α-螺旋束蛋白中证明了可逆开关作用和变构调节的原理,该蛋白在靠近二硫键环区域的特定位置含有血红素。单个束呈现出与大规模机械变化相关的两种开关状态之一:顺式拓扑结构(不同亚基的螺旋平行)或反式拓扑结构(螺旋反平行)。连接到环区域的粪卟啉探针的光谱特性以及血红素之间的距离依赖性氧化还原相互作用都能确定拓扑结构。从顺式拓扑结构开始,在每个亚基中引入三价铁血红素(无论是结合还是氧化还原变化)会使拓扑平衡向反式优势转变25至50倍(1.9至2.3千卡/摩尔)。两个内部阳离子三价铁血红素之间的电荷排斥驱动了顺式到反式的转变,这通过两种方式得到了证明。当固定在顺式拓扑结构中时,第二个三价铁血红素的结合比第一个弱25至80倍(1.9至2.6千卡/摩尔),相邻血红素的氧化还原电位相差80毫伏(1.85千卡/摩尔),这些值在能量上与拓扑平衡的转变相匹配。离子强度对开关的变构和协同调节利用了两个血红素之间屏蔽的电荷相互作用以及粪卟啉羧酸盐之间暴露的协同相互作用。