Gibney B R, Huang S S, Skalicky J J, Fuentes E J, Wand A J, Dutton P L
The Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Biochemistry. 2001 Sep 4;40(35):10550-61. doi: 10.1021/bi002806h.
We have investigated the properties of the two hemes bound to histidine in the H10 positions of the uniquely structured apo form of the heme binding four-helix bundle protein maquette H10H24-L6I,L13F, here called I(6)F(13)H(24) for the amino acids at positions 6 (I), 13 (F) and 24 (H), respectively. The primary structure of each alpha-helix, alpha-SH, in I(6)F(13)H(24) is Ac-CGGGEI(6)WKL.H(10)EEF(13)LKK.FEELLKL.H(24)EERLKK.L-CONH(2). In our nomenclature, [I(6)F(13)H(24)] represents the disulfide-bridged di-alpha-helical homodimer of this sequence, i.e., (alpha-SS-alpha), and I(6)F(13)H(24) represents the dimeric four helix bundle composed of two di-alpha-helical subunits, i.e., (alpha-SS-alpha)(2). We replaced the histidines at positions H24 in I(6)F(13)H(24) with hydrophobic amino acids incompetent for heme ligation. These maquette variants, I(6)F(13)I(24), I(6)F(13)A(24), and I(6)F(13)F(24), are distinguished from the tetraheme binding parent peptide, I(6)F(13)H(24), by a reduction in the heme:four-helix bundle stoichiometry from 4:1 to 2:1. Iterative redesign has identified phenylalanine as the optimal amino acid replacement for H24 in the context of apo state conformational specificity. Furthermore, the novel second generation diheme I(6)F(13)F(24) maquette was related to the first generation diheme H10A24 prototype, L(6)L(13)A(24) in the present nomenclature, via a sequential path in sequence space to evaluate the effects of conservative hydrophobic amino acid changes on heme properties. Each of the disulfide-linked dipeptides studied was highly helical (>77% as determined from circular dichroism spectroscopy), self-associates in solution to form a dimer (as determined by size exclusion chromatography), is thermodynamically stable (-DeltaG(H)2(O) >18 kcal/mol), and possesses conformational specificity that NMR data indicate can vary from multistructured to single structured. Each peptide binds one heme with a dissociation constant, K(d1) value, tighter than 65 nM forming a series of monoheme maquettes. Addition of a second equivalent of heme results in heme binding with a K(d2) in the range of 35-800 nM forming the diheme maquette state. Single conservative amino acid changes between peptide sequences are responsible for up to 10-fold changes in K(d) values. The equilibrium reduction midpoint potential (E(m7.5)) determined in the monoheme state ranges from -156 to -210 mV vs SHE and in the diheme state ranges from -144 to -288 mV. An observed heme-heme electrostatic interaction (>70 mV) in the diheme state indicates a syn global topology of the di-alpha-helical monomers. The heme affinity and electrochemistry of the three H24 variants studied identify the tight binding sites (K(d1) and K(d2) values <200 nM) having the lower reduction midpoint potentials (E(m7.5) values of -155 and -260 mV) with the H10 bound hemes in the parent tetraheme state of H10H24-L6I,L13F, here called I(6)F(13)H(24). The results of this study illustrate that conservative hydrophobic amino acid changes near the heme binding site can modulate the E(m) by up to +/-50 mV and the K(d) by an order of magnitude. Furthermore, the effects of multiple single amino acid changes on E(m) and K(d) do not appear to be additive.
我们研究了与血红素结合的四螺旋束蛋白maquette H10H24-L6I,L13F(此处根据6位(I)、13位(F)和24位(H)的氨基酸分别称为I(6)F(13)H(24))独特结构的脱辅基形式中与组氨酸结合的两个血红素的性质。I(6)F(13)H(24)中每个α-螺旋(α-SH)的一级结构为Ac-CGGGEI(6)WKL.H(10)EEF(13)LKK.FEELLKL.H(24)EERLKK.L-CONH(2)。在我们的命名法中,[I(6)F(13)H(24)]表示该序列的二硫键连接的二α-螺旋同二聚体,即(α-SS-α),而I(6)F(13)H(24)表示由两个二α-螺旋亚基组成的二聚体四螺旋束,即(α-SS-α)(2)。我们用不能进行血红素连接的疏水性氨基酸取代了I(6)F(13)H(24)中H24位的组氨酸。这些maquette变体,I(6)F(13)I(24)、I(6)F(13)A(24)和I(6)F(13)F(24),与四血红素结合的亲本肽I(6)F(13)H(24)的区别在于血红素与四螺旋束的化学计量比从4:1降至2:1。迭代重新设计已确定苯丙氨酸是在脱辅基状态构象特异性背景下H24的最佳氨基酸替代物。此外,可以通过序列空间中的连续路径,将新型第二代二血红素I(6)F(13)F(24) maquette与第一代二血红素H10A24原型(在本命名法中为L(6)L(13)A(24))相关联,以评估保守疏水性氨基酸变化对血红素性质的影响。所研究的每个二硫键连接的二肽都具有高度螺旋性(通过圆二色光谱法测定>77%),在溶液中自缔合形成二聚体(通过尺寸排阻色谱法测定),具有热力学稳定性(-ΔG(H)2(O) >18 kcal/mol),并且具有构象特异性,NMR数据表明其可以从多结构变化为单结构。每个肽与一个血红素结合,解离常数K(d1)值小于65 nM,形成一系列单血红素maquette。加入第二个当量的血红素会导致血红素以35 - 800 nM范围内的K(d2)结合,形成二血红素maquette状态。肽序列之间单个保守氨基酸的变化会导致K(d)值变化高达10倍。在单血红素状态下测定的平衡还原中点电位(E(m7.5))相对于标准氢电极(SHE)范围为-156至-210 mV,在二血红素状态下范围为-144至-288 mV。在二血红素状态下观察到的血红素-血红素静电相互作用(>70 mV)表明二α-螺旋单体具有同向全局拓扑结构。所研究的三个H24变体的血红素亲和力和电化学性质确定了紧密结合位点(K(d1)和K(d2)值<200 nM)具有较低的还原中点电位(E(m7.5)值为-155和-260 mV),且在H10H24-L6I,L13F(此处称为I(6)F(13)H(24))的亲本四血红素状态下与H10结合的血红素相关。这项研究的结果表明,血红素结合位点附近保守疏水性氨基酸的变化可使E(m)调节高达±50 mV,K(d)调节一个数量级。此外,多个单氨基酸变化对E(m)和K(d)的影响似乎不是累加的。