Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Nat Commun. 2023 Mar 3;14(1):1222. doi: 10.1038/s41467-023-36940-z.
Growth and division of biological cells are based on the complex orchestration of spatiotemporally controlled reactions driven by highly evolved proteins. In contrast, it remains unknown how their primordial predecessors could achieve a stable inheritance of cytosolic components before the advent of translation. An attractive scenario assumes that periodic changes of environmental conditions acted as pacemakers for the proliferation of early protocells. Using catalytic RNA (ribozymes) as models for primitive biocatalytic molecules, we demonstrate that the repeated freezing and thawing of aqueous solutions enables the assembly of active ribozymes from inactive precursors encapsulated in separate lipid vesicle populations. Furthermore, we show that encapsulated ribozyme replicators can overcome freezing-induced content loss and successive dilution by freeze-thaw driven propagation in feedstock vesicles. Thus, cyclic freezing and melting of aqueous solvents - a plausible physicochemical driver likely present on early Earth - provides a simple scenario that uncouples compartment growth and division from RNA self-replication, while maintaining the propagation of these replicators inside new vesicle populations.
生物细胞的生长和分裂是基于受高度进化的蛋白质驱动的时空控制反应的复杂协调。相比之下,在翻译出现之前,它们的原始前体如何在细胞质成分稳定遗传方面还不得而知。一个有吸引力的假设是,环境条件的周期性变化充当了早期原细胞增殖的起搏器。使用催化 RNA(核酶)作为原始生物催化分子的模型,我们证明了重复的冷冻和解冻水溶液能够将封装在单独脂质囊泡群体中的无活性前体组装成有活性的核酶。此外,我们还表明,封装的核酶复制子可以克服冷冻诱导的内容损失,并通过在原料囊泡中冷冻-解冻驱动的传播进行连续稀释。因此,水溶液的周期性冷冻和融化——一种在早期地球上可能存在的合理理化驱动因素——提供了一个简单的情景,将隔室的生长和分裂与 RNA 自我复制分离,同时在新的囊泡群体中维持这些复制子的传播。