Palmer A G
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA.
Annu Rev Biophys Biomol Struct. 2001;30:129-55. doi: 10.1146/annurev.biophys.30.1.129.
NMR spin relaxation spectroscopy is a powerful approach for characterizing intramolecular and overall rotational motions in proteins. This review describes experimental methods for measuring laboratory frame spin relaxation rate constants by high-resolution solution-state NMR spectroscopy, together with theoretical approaches for interpreting spin relaxation data in order to quantify protein conformational dynamics on picosecond-nanosecond time scales. Recent applications of these techniques to proteins are surveyed, and investigations of the contribution of conformational chain entropy to protein function are highlighted. Insights into the dynamical properties of proteins obtained from NMR spin relaxation spectroscopy are compared with results derived from other experimental and theoretical techniques.
核磁共振自旋弛豫光谱学是表征蛋白质分子内和整体旋转运动的一种强大方法。本综述描述了通过高分辨率溶液态核磁共振光谱测量实验室坐标系自旋弛豫速率常数的实验方法,以及解释自旋弛豫数据以量化皮秒至纳秒时间尺度上蛋白质构象动力学的理论方法。综述了这些技术在蛋白质方面的最新应用,并重点介绍了对构象链熵对蛋白质功能贡献的研究。将从核磁共振自旋弛豫光谱学获得的蛋白质动力学特性的见解与其他实验和理论技术得出的结果进行了比较。