Suppr超能文献

通过代谢建模剖析叶绿体中的超氧化物歧化酶-抗坏血酸-谷胱甘肽途径。作为通量分析的一个步骤的计算机模拟。

Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis.

作者信息

Polle A

机构信息

Georg-August Universitaet, Forstbotanisches Institut, Abteilung I, Forstbotanik und Baumphysiologie, Buesgenweg 2, 37077 Goettingen, Germany.

出版信息

Plant Physiol. 2001 May;126(1):445-62. doi: 10.1104/pp.126.1.445.

Abstract

The present study introduces metabolic modeling as a new tool to analyze the network of redox reactions composing the superoxide dismutase-ascorbate (Asc)-glutathione (GSH) cycle. Based on previously determined concentrations of antioxidants and defense enzymes in chloroplasts, kinetic properties of antioxidative enzymes, and nonenzymatic rate constants of antioxidants with reactive oxygen, models were constructed to simulate oxidative stress and calculate changes in concentrations and fluxes of oxidants and antioxidants. Simulated oxidative stress in chloroplasts did not result in a significant accumulation of O2*- and H2O2 when the supply with reductant was sufficient. Model results suggest that the coupling between Asc- and GSH-related redox systems was weak because monodehydroascorbate radical reductase prevented dehydroascorbate (DHA) formation efficiently. DHA reductase activity was dispensable. Glutathione reductase was mainly required for the recycling of GSH oxidized in nonenzymatic reactions. In the absence of monodehydroascorbate radical reductase and DHA reductase, glutathione reductase and GSH were capable to maintain the Asc pool more than 99% reduced. This suggests that measured DHA/Asc ratios do not reflect a redox balance related to the Asc-GSH-cycle. Decreases in Asc peroxidase resulted in marked H2O2 accumulation without significant effects on the redox balance of Asc/DHA or GSH/GSSG. Simulated loss of SOD resulted in higher H2O2 production rates, thereby affecting all subsequent steps of the Asc-GSH-cycle. In conclusion, modeling approaches contribute to the theoretical understanding of the functioning of antioxidant systems by pointing out questions that need to be validated and provide additional information that is useful to develop breeding strategies for higher stress resistance in plants.

摘要

本研究引入代谢建模作为一种新工具,用于分析构成超氧化物歧化酶 - 抗坏血酸(Asc) - 谷胱甘肽(GSH)循环的氧化还原反应网络。基于先前测定的叶绿体中抗氧化剂和防御酶的浓度、抗氧化酶的动力学特性以及抗氧化剂与活性氧的非酶促速率常数,构建模型以模拟氧化应激并计算氧化剂和抗氧化剂的浓度及通量变化。当还原剂供应充足时,叶绿体中模拟的氧化应激并未导致超氧阴离子(O2*-)和过氧化氢(H2O2)的显著积累。模型结果表明,Asc和GSH相关氧化还原系统之间的耦合较弱,因为单脱氢抗坏血酸自由基还原酶有效地阻止了脱氢抗坏血酸(DHA)的形成。DHA还原酶活性是可有可无的。谷胱甘肽还原酶主要用于非酶促反应中氧化型谷胱甘肽(GSSG)的循环利用。在缺乏单脱氢抗坏血酸自由基还原酶和DHA还原酶的情况下,谷胱甘肽还原酶和GSH能够使抗坏血酸池维持超过99%的还原状态。这表明测得的DHA/Asc比值并不反映与Asc - GSH循环相关的氧化还原平衡。抗坏血酸过氧化物酶的减少导致显著的H2O2积累,但对Asc/DHA或GSH/GSSG的氧化还原平衡没有显著影响。模拟超氧化物歧化酶(SOD)的缺失导致更高的H2O2产生速率,从而影响Asc - GSH循环的所有后续步骤。总之,建模方法通过指出需要验证的问题,有助于从理论上理解抗氧化系统的功能,并提供有助于制定提高植物抗逆性育种策略的额外信息。

相似文献

2
Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed.
J Plant Physiol. 2014 Jan 15;171(2):140-7. doi: 10.1016/j.jplph.2013.09.016. Epub 2013 Nov 21.
3
Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts.
Plant Physiol. 2009 Apr;149(4):1958-69. doi: 10.1104/pp.108.133223. Epub 2009 Feb 25.
6
Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).
Plant Cell Physiol. 2015 May;56(5):897-905. doi: 10.1093/pcp/pcv015. Epub 2015 Feb 2.
7
Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates.
Photochem Photobiol Sci. 2023 Aug;22(8):2005-2018. doi: 10.1007/s43630-023-00425-1. Epub 2023 May 17.
8
Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana.
J Plant Physiol. 2015 Aug 15;186-187:25-38. doi: 10.1016/j.jplph.2015.07.011. Epub 2015 Aug 20.

引用本文的文献

1
Toward sustainable crops: integrating vegetative (non-seed) lipid storage, carbon-nitrogen dynamics, and redox regulation.
Front Plant Sci. 2025 Jun 3;16:1589127. doi: 10.3389/fpls.2025.1589127. eCollection 2025.
2
Hydrogen peroxide, ascorbate, and glutathione: building the Foyer-Halliwell-Asada pathway.
Planta. 2025 May 8;261(6):132. doi: 10.1007/s00425-025-04702-4.
5
Desert dust improves the photophysiology of heat-stressed corals beyond iron.
Sci Rep. 2024 Nov 3;14(1):26509. doi: 10.1038/s41598-024-77381-y.
6
From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement.
Photosynth Res. 2024 Aug;161(1-2):21-49. doi: 10.1007/s11120-024-01083-9. Epub 2024 Apr 15.
10

本文引用的文献

6
Hydrogen-peroxide-scavenging systems within pea chloroplasts : A quantitative study.
Planta. 1986 Feb;167(2):246-51. doi: 10.1007/BF00391422.
7
9
ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control.
Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279. doi: 10.1146/annurev.arplant.49.1.249.
10
THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons.
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639. doi: 10.1146/annurev.arplant.50.1.601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验