Goutte C, Hansen L K, Liptrot M G, Rostrup E
INRIA Rhône-Alpes, Montbonnot, Saint Ismier, France.
Hum Brain Mapp. 2001 Jul;13(3):165-83. doi: 10.1002/hbm.1031.
Clustering functional magnetic resonance imaging (fMRI) time series has emerged in recent years as a possible alternative to parametric modeling approaches. Most of the work so far has been concerned with clustering raw time series. In this contribution we investigate the applicability of a clustering method applied to features extracted from the data. This approach is extremely versatile and encompasses previously published results [Goutte et al., 1999] as special cases. A typical application is in data reduction: as the increase in temporal resolution of fMRI experiments routinely yields fMRI sequences containing several hundreds of images, it is sometimes necessary to invoke feature extraction to reduce the dimensionality of the data space. A second interesting application is in the meta-analysis of fMRI experiment, where features are obtained from a possibly large number of single-voxel analyses. In particular this allows the checking of the differences and agreements between different methods of analysis. Both approaches are illustrated on a fMRI data set involving visual stimulation, and we show that the feature space clustering approach yields nontrivial results and, in particular, shows interesting differences between individual voxel analysis performed with traditional methods.
近年来,对功能磁共振成像(fMRI)时间序列进行聚类已成为参数建模方法的一种可能替代方案。到目前为止,大多数工作都集中在对原始时间序列进行聚类。在本论文中,我们研究了一种聚类方法应用于从数据中提取的特征的适用性。这种方法具有极高的通用性,并且包含了先前发表的结果[古特等人,1999]作为特殊情况。一个典型的应用是数据缩减:由于fMRI实验中时间分辨率的提高通常会产生包含数百幅图像的fMRI序列,有时有必要进行特征提取以降低数据空间的维度。第二个有趣的应用是在fMRI实验的元分析中,其中特征是从可能大量的单像素分析中获得的。特别是,这允许检查不同分析方法之间的差异和一致性。这两种方法都在一个涉及视觉刺激的fMRI数据集上进行了说明,并且我们表明特征空间聚类方法产生了重要的结果,特别是,显示了使用传统方法进行的个体像素分析之间有趣的差异。