Suppr超能文献

用于功能磁共振成像元分析的特征空间聚类

Feature-space clustering for fMRI meta-analysis.

作者信息

Goutte C, Hansen L K, Liptrot M G, Rostrup E

机构信息

INRIA Rhône-Alpes, Montbonnot, Saint Ismier, France.

出版信息

Hum Brain Mapp. 2001 Jul;13(3):165-83. doi: 10.1002/hbm.1031.

Abstract

Clustering functional magnetic resonance imaging (fMRI) time series has emerged in recent years as a possible alternative to parametric modeling approaches. Most of the work so far has been concerned with clustering raw time series. In this contribution we investigate the applicability of a clustering method applied to features extracted from the data. This approach is extremely versatile and encompasses previously published results [Goutte et al., 1999] as special cases. A typical application is in data reduction: as the increase in temporal resolution of fMRI experiments routinely yields fMRI sequences containing several hundreds of images, it is sometimes necessary to invoke feature extraction to reduce the dimensionality of the data space. A second interesting application is in the meta-analysis of fMRI experiment, where features are obtained from a possibly large number of single-voxel analyses. In particular this allows the checking of the differences and agreements between different methods of analysis. Both approaches are illustrated on a fMRI data set involving visual stimulation, and we show that the feature space clustering approach yields nontrivial results and, in particular, shows interesting differences between individual voxel analysis performed with traditional methods.

摘要

近年来,对功能磁共振成像(fMRI)时间序列进行聚类已成为参数建模方法的一种可能替代方案。到目前为止,大多数工作都集中在对原始时间序列进行聚类。在本论文中,我们研究了一种聚类方法应用于从数据中提取的特征的适用性。这种方法具有极高的通用性,并且包含了先前发表的结果[古特等人,1999]作为特殊情况。一个典型的应用是数据缩减:由于fMRI实验中时间分辨率的提高通常会产生包含数百幅图像的fMRI序列,有时有必要进行特征提取以降低数据空间的维度。第二个有趣的应用是在fMRI实验的元分析中,其中特征是从可能大量的单像素分析中获得的。特别是,这允许检查不同分析方法之间的差异和一致性。这两种方法都在一个涉及视觉刺激的fMRI数据集上进行了说明,并且我们表明特征空间聚类方法产生了重要的结果,特别是,显示了使用传统方法进行的个体像素分析之间有趣的差异。

相似文献

1
Feature-space clustering for fMRI meta-analysis.
Hum Brain Mapp. 2001 Jul;13(3):165-83. doi: 10.1002/hbm.1031.
2
Temporal-spatial mean-shift clustering analysis to improve functional MRI activation detection.
Magn Reson Imaging. 2016 Nov;34(9):1283-1291. doi: 10.1016/j.mri.2016.07.009. Epub 2016 Jul 25.
3
Analysis of event-related fMRI data using best clustering bases.
Inf Process Med Imaging. 2003 Jul;18:623-34. doi: 10.1007/978-3-540-45087-0_52.
4
Sparse geostatistical analysis in clustering fMRI time series.
J Neurosci Methods. 2011 Aug 15;199(2):336-45. doi: 10.1016/j.jneumeth.2011.05.016. Epub 2011 May 27.
5
Feature characterization in fMRI data: the Information Bottleneck approach.
Med Image Anal. 2004 Dec;8(4):403-19. doi: 10.1016/j.media.2004.09.001.
6
Voxel-wise information theoretic EEG-fMRI feature integration.
Neuroimage. 2011 Apr 1;55(3):1270-86. doi: 10.1016/j.neuroimage.2010.12.029. Epub 2010 Dec 15.
9
The optimal linear transformation-based fMRI feature space analysis.
Med Biol Eng Comput. 2009 Nov;47(11):1119-29. doi: 10.1007/s11517-009-0504-6. Epub 2009 Jun 21.
10
A new correlation-based fuzzy logic clustering algorithm for fMRI.
Magn Reson Med. 1998 Aug;40(2):249-60. doi: 10.1002/mrm.1910400211.

引用本文的文献

2
DENDRO: genetic heterogeneity profiling and subclone detection by single-cell RNA sequencing.
Genome Biol. 2020 Jan 14;21(1):10. doi: 10.1186/s13059-019-1922-x.
3
Clustering the Brain With "CluB": A New Toolbox for Quantitative Meta-Analysis of Neuroimaging Data.
Front Neurosci. 2019 Oct 22;13:1037. doi: 10.3389/fnins.2019.01037. eCollection 2019.
4
The Rat Medial Prefrontal Cortex Exhibits Flexible Neural Activity States during the Performance of an Odor Span Task.
eNeuro. 2019 Mar 26;6(2). doi: 10.1523/ENEURO.0424-18.2019. eCollection 2019 Mar-Apr.
5
Stochastic Rank Aggregation for the Identification of Functional Neuromarkers.
Neuroinformatics. 2019 Oct;17(4):479-496. doi: 10.1007/s12021-018-9412-y.
6
*K-means and cluster models for cancer signatures.
Biomol Detect Quantif. 2017 Aug 2;13:7-31. doi: 10.1016/j.bdq.2017.07.001. eCollection 2017 Sep.
7
Select and Cluster: A Method for Finding Functional Networks of Clustered Voxels in fMRI.
Comput Intell Neurosci. 2016;2016:4705162. doi: 10.1155/2016/4705162. Epub 2016 Sep 5.
8
Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.
Conf Rec Asilomar Conf Signals Syst Comput. 2008 Oct;2008:1402-1409. doi: 10.1109/ACSSC.2008.5074650.
9
Bounded-observation Kalman filtering of correlation in multivariate neural recordings.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5052-5. doi: 10.1109/EMBC.2014.6944760.
10
Brain Imaging Analysis.
Annu Rev Stat Appl. 2014 Jan;1:61-85. doi: 10.1146/annurev-statistics-022513-115611.

本文引用的文献

1
Assessment and optimization of functional MRI analyses.
Hum Brain Mapp. 1996;4(3):153-67. doi: 10.1002/(SICI)1097-0193(1996)4:3<153::AID-HBM1>3.0.CO;2-2.
2
Plurality and resemblance in fMRI data analysis.
Neuroimage. 1999 Sep;10(3 Pt 1):282-303. doi: 10.1006/nimg.1999.0472.
3
A hierarchical clustering method for analyzing functional MR images.
Magn Reson Imaging. 1999 Jul;17(6):817-26. doi: 10.1016/s0730-725x(99)00014-4.
4
Detection of the early negative response in fMRI at 1.5 Tesla.
Magn Reson Med. 1999 Jun;41(6):1088-92. doi: 10.1002/(sici)1522-2594(199906)41:6<1088::aid-mrm3>3.0.co;2-q.
5
The early response in fMRI: a modeling approach.
Magn Reson Med. 1999 Mar;41(3):550-4. doi: 10.1002/(sici)1522-2594(199903)41:3<550::aid-mrm18>3.0.co;2-q.
6
Further evaluation of the initial negative response in functional magnetic resonance imaging.
Magn Reson Med. 1999 Mar;41(3):436-41. doi: 10.1002/(sici)1522-2594(199903)41:3<436::aid-mrm2>3.0.co;2-#.
7
On clustering fMRI time series.
Neuroimage. 1999 Mar;9(3):298-310. doi: 10.1006/nimg.1998.0391.
8
A new correlation-based fuzzy logic clustering algorithm for fMRI.
Magn Reson Med. 1998 Aug;40(2):249-60. doi: 10.1002/mrm.1910400211.
9
Analysis of fMRI data by blind separation into independent spatial components.
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3&#x0003c;160::AID-HBM5&#x0003e;3.0.CO;2-1.
10
Dynamics of blood flow and oxygenation changes during brain activation: the balloon model.
Magn Reson Med. 1998 Jun;39(6):855-64. doi: 10.1002/mrm.1910390602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验