Suppr超能文献

多元神经记录中相关性的有界观测卡尔曼滤波

Bounded-observation Kalman filtering of correlation in multivariate neural recordings.

作者信息

Kafashan MohammadMehdi, Palanca Ben J, Ching ShiNung

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5052-5. doi: 10.1109/EMBC.2014.6944760.

Abstract

A persistent question in multivariate neural signal processing is how best to characterize the statistical association between brain regions known as functional connectivity. Of the many metrics available for determining such association, the standard Pearson correlation coefficient (i.e., the zero-lag cross-correlation) remains widely used, particularly in neuroimaging. Generally, the cross-correlation is computed over an entire trial or recording session, with the assumption of within-trial stationarity. Increasingly, however, the length and complexity of neural data requires characterizing transient effects and/or non-stationarity in the temporal evolution of the correlation. That is, to estimate dynamics in the association between brain regions. Here, we present a simple, data-driven Kalman filter-based approach to tracking correlation dynamics. The filter explicitly accounts for the bounded nature of correlation measurements through the inclusion of a Fisher transform in the measurement equation. An output linearization facilitates a straightforward implementation of the standard recursive filter equations, including admittance of covariance identification via an autoregressive least squares method. We demonstrate the efficacy and utility of the approach in an example of multivariate neural functional magnetic resonance imaging data.

摘要

多变量神经信号处理中一个长期存在的问题是,如何最好地描述被称为功能连接的脑区之间的统计关联。在用于确定这种关联的众多指标中,标准的皮尔逊相关系数(即零滞后互相关)仍然被广泛使用,尤其是在神经成像领域。一般来说,互相关是在整个试验或记录过程中计算的,假设试验内具有平稳性。然而,神经数据的长度和复杂性越来越高,需要描述相关性时间演变中的瞬态效应和/或非平稳性。也就是说,要估计脑区之间关联的动态变化。在这里,我们提出一种基于数据驱动的简单卡尔曼滤波器方法来跟踪相关性动态。该滤波器通过在测量方程中纳入费希尔变换,明确考虑了相关测量的有界性质。输出线性化便于直接实现标准的递归滤波器方程,包括通过自回归最小二乘法进行协方差识别。我们在一个多变量神经功能磁共振成像数据的例子中展示了该方法的有效性和实用性。

相似文献

3
Time-dependence of graph theory metrics in functional connectivity analysis.功能连接性分析中图形理论指标的时间依赖性。
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
4
MR fingerprinting reconstruction with Kalman filter.基于卡尔曼滤波器的磁共振指纹图谱重建
Magn Reson Imaging. 2017 Sep;41:53-62. doi: 10.1016/j.mri.2017.04.004. Epub 2017 Apr 19.
7
Modeling time-varying brain networks with a self-tuning optimized Kalman filter.用自调优优化卡尔曼滤波器对时变脑网络进行建模。
PLoS Comput Biol. 2020 Aug 17;16(8):e1007566. doi: 10.1371/journal.pcbi.1007566. eCollection 2020 Aug.

本文引用的文献

2
The restless brain.不安分的大脑。
Brain Connect. 2011;1(1):3-12. doi: 10.1089/brain.2011.0019.
3
Functional network organization of the human brain.人类大脑的功能网络组织。
Neuron. 2011 Nov 17;72(4):665-78. doi: 10.1016/j.neuron.2011.09.006.
4
The influence of head motion on intrinsic functional connectivity MRI.头部运动对自发性功能磁共振连接的影响。
Neuroimage. 2012 Jan 2;59(1):431-8. doi: 10.1016/j.neuroimage.2011.07.044. Epub 2011 Jul 23.
9
Dynamic causal modelling.动态因果模型
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验