Kafashan MohammadMehdi, Palanca Ben J, Ching ShiNung
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5052-5. doi: 10.1109/EMBC.2014.6944760.
A persistent question in multivariate neural signal processing is how best to characterize the statistical association between brain regions known as functional connectivity. Of the many metrics available for determining such association, the standard Pearson correlation coefficient (i.e., the zero-lag cross-correlation) remains widely used, particularly in neuroimaging. Generally, the cross-correlation is computed over an entire trial or recording session, with the assumption of within-trial stationarity. Increasingly, however, the length and complexity of neural data requires characterizing transient effects and/or non-stationarity in the temporal evolution of the correlation. That is, to estimate dynamics in the association between brain regions. Here, we present a simple, data-driven Kalman filter-based approach to tracking correlation dynamics. The filter explicitly accounts for the bounded nature of correlation measurements through the inclusion of a Fisher transform in the measurement equation. An output linearization facilitates a straightforward implementation of the standard recursive filter equations, including admittance of covariance identification via an autoregressive least squares method. We demonstrate the efficacy and utility of the approach in an example of multivariate neural functional magnetic resonance imaging data.
多变量神经信号处理中一个长期存在的问题是,如何最好地描述被称为功能连接的脑区之间的统计关联。在用于确定这种关联的众多指标中,标准的皮尔逊相关系数(即零滞后互相关)仍然被广泛使用,尤其是在神经成像领域。一般来说,互相关是在整个试验或记录过程中计算的,假设试验内具有平稳性。然而,神经数据的长度和复杂性越来越高,需要描述相关性时间演变中的瞬态效应和/或非平稳性。也就是说,要估计脑区之间关联的动态变化。在这里,我们提出一种基于数据驱动的简单卡尔曼滤波器方法来跟踪相关性动态。该滤波器通过在测量方程中纳入费希尔变换,明确考虑了相关测量的有界性质。输出线性化便于直接实现标准的递归滤波器方程,包括通过自回归最小二乘法进行协方差识别。我们在一个多变量神经功能磁共振成像数据的例子中展示了该方法的有效性和实用性。