Armstead W M
Departments of Anesthesia and Pharmacology, University of Pennsylvania, Philadelphia 19104, USA.
Stroke. 2001 Jun;32(6):1408-14. doi: 10.1161/01.str.32.6.1408.
Pial artery dilation in response to activators of the ATP-sensitive K(+) (K(ATP)) and calcium-sensitive K(+) (K(Ca)) channels is impaired after fluid percussion brain injury (FPI). Vasopressin, when coadministered with the K(ATP) and K(Ca) channel agonists cromakalim and NS1619 in a concentration approximating that observed in cerebrospinal fluid (CSF) after FPI, blunted K(ATP) and K(Ca) channel-mediated vasodilation. Vasopressin also contributes to impaired K(ATP) and K(Ca) channel vasodilation after FPI. In addition, protein kinase C (PKC) activation generates superoxide anion (O(2)(-)), which in turn contributes to K(ATP) channel impairment after FPI. We tested whether vasopressin generates O(2)(-) in a protein kinase C (PKC)-dependent manner, which could link vasopressin release to impaired K(ATP) and K(Ca) channel-induced pial artery dilation after FPI.
Injury of moderate severity (1.9 to 2.1 atm) was produced with the lateral FPI technique in anesthetized newborn pigs equipped with a closed cranial window. Superoxide dismutase-inhibitable nitroblue tetrazolium (NBT) reduction was determined as an index of O(2)(-) generation.
Under sham injury conditions, topical vasopressin (40 pg/mL, the concentration present in CSF after FPI) increased superoxide dismutase-inhibitable NBT reduction from 1+/-1 to 23+/-4 pmol/mm(2). Chelerythrine (10(-7) mol/L, a PKC inhibitor) blunted such NBT reduction (1+/-1 to 9+/-2 pmol/mm(2)), whereas the vasopressin antagonist l-(beta-mercapto-beta,beta-cyclopentamethylene propionic acid)2-(o-methyl)-Tyr-arginine vasopressin (MEAVP) blocked NBT reduction. Chelerythrine and MEAVP also blunted the NBT reduction observed after FPI (1+/-1 to 15+/-1, 1+/-1 to 4+/-1, and 1+/-1 to 5+/-1 pmol/mm(2) for sham-, chelerythrine-, and MEAVP-treated animals, respectively). Under sham injury conditions, vasopressin (40 pg/mL) coadministered with cromakalim or NS1619 blunted dilation in response to these K(+) channel agonists, whereas chelerythrine partially restored such impaired vasodilation for cromakalim but not NS1619. Cromakalim- and NS1619-induced pial artery dilation also was blunted after FPI. MEAVP partially protected dilation to both K(+) channel agonists after FPI, whereas chelerythrine did so for only cromakalim responses (for cromakalim at 10(-8) and 10(-6) mol/L, 13+/-1% and 23+/-1%, 2+/-1% and 5+/-1%, 9+/-1% and 15+/-2%, and 9+/-1% and 16+/-2% for sham-, FPI-, FPI-MEAVP-, and FPI-chelerythrine-pretreated animals, respectively).
These data show that vasopressin, in concentrations present in CSF after FPI, increased O(2)(-) production in a PKC-dependent manner and contributes to such production after FPI. These data show that vasopressin contributes to K(ATP) but not K(Ca) channel function impairment in a PKC-dependent manner after FPI and suggest that vasopressin contributes to K(Ca) channel function impairment after FPI via a mechanism independent of PKC activation.
在液体冲击脑损伤(FPI)后,软脑膜动脉对ATP敏感性钾通道(K(ATP))和钙敏感性钾通道(K(Ca))激活剂的扩张反应受损。加压素与K(ATP)和K(Ca)通道激动剂克罗卡林和NS1619联合给药,其浓度接近FPI后脑脊液(CSF)中观察到的浓度时,会减弱K(ATP)和K(Ca)通道介导的血管舒张。加压素也导致FPI后K(ATP)和K(Ca)通道血管舒张受损。此外,蛋白激酶C(PKC)激活会产生超氧阴离子(O(2)(-)),这反过来又导致FPI后K(ATP)通道受损。我们测试了加压素是否以蛋白激酶C(PKC)依赖的方式产生O(2)(-),这可能将加压素释放与FPI后K(ATP)和K(Ca)通道诱导的软脑膜动脉扩张受损联系起来。
采用侧方FPI技术,在配备封闭颅骨窗口的麻醉新生猪中造成中度严重程度(1.9至2.1个大气压)的损伤。将超氧化物歧化酶可抑制的硝基蓝四唑(NBT)还原作为O(2)(-)产生的指标进行测定。
在假损伤条件下,局部应用加压素(40 pg/mL,FPI后CSF中的浓度)使超氧化物歧化酶可抑制的NBT还原从1±1增加到23±4 pmol/mm(2)。白屈菜红碱(10(-7) mol/L,一种PKC抑制剂)减弱了这种NBT还原(从1±1到9±2 pmol/mm(2)),而加压素拮抗剂l-(β-巯基-β,β-环亚戊基丙酸)2-(邻甲基)-酪氨酸-精氨酸加压素(MEAVP)阻断了NBT还原。白屈菜红碱和MEAVP也减弱了FPI后观察到的NBT还原(假手术、白屈菜红碱和MEAVP处理的动物分别为1±1到15±1、1±1到4±1和1±1到5±1 pmol/mm(2))。在假损伤条件下,与克罗卡林或NS1619联合给药的加压素(40 pg/mL)减弱了对这些K(+)通道激动剂的扩张反应,而白屈菜红碱部分恢复了对克罗卡林的这种受损血管舒张,但对NS1619没有作用。FPI后克罗卡林和NS1619诱导的软脑膜动脉扩张也减弱。MEAVP部分保护了FPI后对两种K(+)通道激动剂的扩张,而白屈菜红碱仅对克罗卡林反应有此作用(对于10(-8)和10(-6) mol/L的克罗卡林,假手术、FPI、FPI-MEAVP和FPI-白屈菜红碱预处理的动物分别为13±1%和23±1%、2±1%和5±1%、9±1%和15±2%以及9±1%和16±2%)。
这些数据表明,FPI后CSF中存在的浓度的加压素以PKC依赖的方式增加O(2)(-)产生,并在FPI后导致这种产生。这些数据表明,FPI后加压素以PKC依赖的方式导致K(ATP)通道功能受损,但不导致K(Ca)通道功能受损,并提示加压素通过独立于PKC激活的机制导致FPI后K(Ca)通道功能受损。