Suppr超能文献

通过球面白噪声分析揭示的听觉时空感受野动态

Auditory space-time receptive field dynamics revealed by spherical white-noise analysis.

作者信息

Jenison R L, Schnupp J W, Reale R A, Brugge J F

机构信息

Departments of Psychology, and Waisman Center, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

J Neurosci. 2001 Jun 15;21(12):4408-15. doi: 10.1523/JNEUROSCI.21-12-04408.2001.

Abstract

Numerous studies have investigated the spatial sensitivity of cat auditory cortical neurons, but possible dynamic properties of the spatial receptive fields have been largely ignored. Given the considerable amount of evidence that implicates the primary auditory field in the neural pathways responsible for the perception of sound source location, a logical extension to earlier observations of spectrotemporal receptive fields, which characterize the dynamics of frequency tuning, is a description that uses sound source direction, rather than sound frequency, to examine the evolution of spatial tuning over time. The object of this study was to describe auditory space-time receptive field dynamics using a new method based on cross-correlational techniques and white-noise analysis in spherical auditory space. This resulted in a characterization of auditory receptive fields in two spherical dimensions of space (azimuth and elevation) plus a third dimension of time. Further analysis has revealed that spatial receptive fields of neurons in auditory cortex, like those in the visual system, are not static but can exhibit marked temporal dynamics. This might result, for example, in a neuron becoming selective for the direction and speed of moving auditory sound sources. Our results show that approximately 14% of AI neurons evidence significant space-time interaction (inseparability).

摘要

许多研究调查了猫听觉皮层神经元的空间敏感性,但空间感受野可能的动态特性在很大程度上被忽视了。鉴于大量证据表明初级听觉场参与了负责声源定位感知的神经通路,对早期关于频谱时间感受野(其表征频率调谐的动态特性)观察结果的合理扩展是,使用声源方向而非声音频率来描述空间调谐随时间的演变。本研究的目的是在球形听觉空间中,使用基于互相关技术和白噪声分析的新方法来描述听觉时空感受野动态特性。这产生了在空间的两个球形维度(方位角和仰角)加上时间的第三个维度上对听觉感受野的表征。进一步分析表明,听觉皮层中神经元的空间感受野,与视觉系统中的感受野一样,不是静态的,而是可以表现出显著的时间动态特性。例如,这可能导致一个神经元对移动声源的方向和速度变得具有选择性。我们的结果表明,约14%的初级听觉区(AI)神经元表现出显著的时空相互作用(不可分离性)。

相似文献

1
Auditory space-time receptive field dynamics revealed by spherical white-noise analysis.
J Neurosci. 2001 Jun 15;21(12):4408-15. doi: 10.1523/JNEUROSCI.21-12-04408.2001.
3
Auditory cortical spatial receptive fields.
Audiol Neurootol. 2001 Jul-Aug;6(4):173-7. doi: 10.1159/000046827.
5
Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
J Neurosci. 2015 Dec 9;35(49):16105-15. doi: 10.1523/JNEUROSCI.2563-15.2015.
6
Representation of auditory space by cortical neurons in awake cats.
J Neurosci. 2003 Sep 24;23(25):8649-63. doi: 10.1523/JNEUROSCI.23-25-08649.2003.
7
Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex.
J Neurophysiol. 2005 Aug;94(2):1267-80. doi: 10.1152/jn.00104.2005. Epub 2005 Apr 27.
8
Modeling of auditory spatial receptive fields with spherical approximation functions.
J Neurophysiol. 1998 Nov;80(5):2645-56. doi: 10.1152/jn.1998.80.5.2645.
9
Neurons in primary auditory cortex represent sound source location in a cue-invariant manner.
Nat Commun. 2019 Jul 9;10(1):3019. doi: 10.1038/s41467-019-10868-9.
10
A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies.
J Neurosci. 2008 Apr 2;28(14):3747-58. doi: 10.1523/JNEUROSCI.5044-07.2008.

引用本文的文献

1
Do you hear what I see? How do early blind individuals experience object motion?
Philos Trans R Soc Lond B Biol Sci. 2023 Jan 30;378(1869):20210460. doi: 10.1098/rstb.2021.0460. Epub 2022 Dec 13.
3
Auditory compensation for head rotation is incomplete.
J Exp Psychol Hum Percept Perform. 2017 Feb;43(2):371-380. doi: 10.1037/xhp0000321. Epub 2016 Nov 14.
4
The structure and timescales of heat perception in larval zebrafish.
Cell Syst. 2015 Nov 25;1(5):338-348. doi: 10.1016/j.cels.2015.10.010.
5
Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex.
PLoS One. 2015 Sep 14;10(9):e0137915. doi: 10.1371/journal.pone.0137915. eCollection 2015.
6
Spectrotemporal response properties of core auditory cortex neurons in awake monkey.
PLoS One. 2015 Feb 13;10(2):e0116118. doi: 10.1371/journal.pone.0116118. eCollection 2015.
7
Discrimination contours for moving sounds reveal duration and distance cues dominate auditory speed perception.
PLoS One. 2014 Jul 30;9(7):e102864. doi: 10.1371/journal.pone.0102864. eCollection 2014.
8
Coding space-time stimulus dynamics in auditory brain maps.
Front Physiol. 2014 Apr 8;5:135. doi: 10.3389/fphys.2014.00135. eCollection 2014.
9
Direction selectivity mediated by adaptation in the owl's inferior colliculus.
J Neurosci. 2013 Dec 4;33(49):19167-75. doi: 10.1523/JNEUROSCI.2920-13.2013.
10
Context-specific reweighting of auditory spatial cues following altered experience during development.
Curr Biol. 2013 Jul 22;23(14):1291-9. doi: 10.1016/j.cub.2013.05.045. Epub 2013 Jun 27.

本文引用的文献

1
Regularization algorithms for learning that are equivalent to multilayer networks.
Science. 1990 Feb 23;247(4945):978-82. doi: 10.1126/science.247.4945.978.
2
Auditory thalamocortical projections in the cat: laminar and areal patterns of input.
J Comp Neurol. 2000 Nov 13;427(2):302-31. doi: 10.1002/1096-9861(20001113)427:2<302::aid-cne10>3.0.co;2-j.
3
Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
J Comput Neurosci. 2000 Jul-Aug;9(1):85-111. doi: 10.1023/a:1008990412183.
4
Neural representation and the cortical code.
Annu Rev Neurosci. 2000;23:613-47. doi: 10.1146/annurev.neuro.23.1.613.
6
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
J Neurosci. 2000 Mar 15;20(6):2315-31. doi: 10.1523/JNEUROSCI.20-06-02315.2000.
7
Interspike intervals, receptive fields, and information encoding in primary visual cortex.
J Neurosci. 2000 Mar 1;20(5):1964-74. doi: 10.1523/JNEUROSCI.20-05-01964.2000.
8
Correlated cortical populations can enhance sound localization performance.
J Acoust Soc Am. 2000 Jan;107(1):414-21. doi: 10.1121/1.428313.
10
Modeling of auditory spatial receptive fields with spherical approximation functions.
J Neurophysiol. 1998 Nov;80(5):2645-56. doi: 10.1152/jn.1998.80.5.2645.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验