Suppr超能文献

使用自然声音获得的非线性听觉神经元的频谱-时间感受野。

Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.

作者信息

Theunissen F E, Sen K, Doupe A J

机构信息

Department of Psychology, University of California, Berkeley, California 94720-1650, USA.

出版信息

J Neurosci. 2000 Mar 15;20(6):2315-31. doi: 10.1523/JNEUROSCI.20-06-02315.2000.

Abstract

The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli.

摘要

许多视觉和听觉神经元的刺激-反应功能已通过时空感受野(STRF)来描述,STRF是一种线性模型,由于数学原因,直到最近一直使用反向相关方法,利用白噪声等简单刺激集合进行估计。然而,此类刺激通常无法有效激活高级感觉神经元,而高级感觉神经元可能经过优化以分析自然声音和图像。我们表明,有可能克服简单刺激的局限性,然后使用这种方法从一组鸟鸣声中计算鸟类听觉前脑神经元的STRF。我们发现,在许多情况下,使用自然声音得出的STRF与使用随机音调脉冲集合获得的STRF显著不同。当我们通过评估这两种模型对实际数据的神经反应预测来进行比较时,我们发现从自然声音中获得的STRF更优。我们的结果表明,STRF模型对非线性听觉神经元的反应特性描述并不完整,但只要从对相关复杂刺激的反应中估计STRF,线性感受野仍是理解高级感觉处理的有用模型。

相似文献

1
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
J Neurosci. 2000 Mar 15;20(6):2315-31. doi: 10.1523/JNEUROSCI.20-06-02315.2000.
2
Capturing contextual effects in spectro-temporal receptive fields.
Hear Res. 2016 Sep;339:195-210. doi: 10.1016/j.heares.2016.07.012. Epub 2016 Jul 27.
3
Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
PLoS One. 2012;7(11):e50539. doi: 10.1371/journal.pone.0050539. Epub 2012 Nov 27.
4
Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.
PLoS Comput Biol. 2013;9(3):e1002982. doi: 10.1371/journal.pcbi.1002982. Epub 2013 Mar 28.
6
Feature analysis of natural sounds in the songbird auditory forebrain.
J Neurophysiol. 2001 Sep;86(3):1445-58. doi: 10.1152/jn.2001.86.3.1445.
8
Contrast tuned responses in primary auditory cortex of the awake ferret.
Eur J Neurosci. 2012 Feb;35(4):550-61. doi: 10.1111/j.1460-9568.2011.07985.x. Epub 2012 Feb 9.
9
A dynamic network model of temporal receptive fields in primary auditory cortex.
PLoS Comput Biol. 2019 May 6;15(5):e1006618. doi: 10.1371/journal.pcbi.1006618. eCollection 2019 May.
10
Delayed inhibition in cortical receptive fields and the discrimination of complex stimuli.
J Neurophysiol. 2005 Oct;94(4):2970-5. doi: 10.1152/jn.00144.2005. Epub 2005 May 25.

引用本文的文献

2
Pupil Responses During Interactive Conversation.
Trends Hear. 2025 Jan-Dec;29:23312165251342441. doi: 10.1177/23312165251342441. Epub 2025 May 14.
3
Reduced Neural Responses to Natural Foreground versus Background Sounds in the Auditory Cortex.
J Neurosci. 2025 Mar 5;45(10):e0121242024. doi: 10.1523/JNEUROSCI.0121-24.2024.
4
Multiplexing of temporal and spatial information in the lateral entorhinal cortex.
Nat Commun. 2024 Dec 3;15(1):10533. doi: 10.1038/s41467-024-54932-5.
5
Spatiotemporal Mapping of Auditory Onsets during Speech Production.
J Neurosci. 2024 Nov 20;44(47):e1109242024. doi: 10.1523/JNEUROSCI.1109-24.2024.
6
A comparison of EEG encoding models using audiovisual stimuli and their unimodal counterparts.
PLoS Comput Biol. 2024 Sep 9;20(9):e1012433. doi: 10.1371/journal.pcbi.1012433. eCollection 2024 Sep.
7
Bidirectional generative adversarial representation learning for natural stimulus synthesis.
J Neurophysiol. 2024 Oct 1;132(4):1156-1169. doi: 10.1152/jn.00421.2023. Epub 2024 Aug 28.
8
Humans can use positive and negative spectrotemporal correlations to detect rising and falling pitch.
bioRxiv. 2024 Nov 21:2024.08.03.606481. doi: 10.1101/2024.08.03.606481.
10
Subcortical origin of nonlinear sound encoding in auditory cortex.
Curr Biol. 2024 Aug 5;34(15):3405-3415.e5. doi: 10.1016/j.cub.2024.06.057. Epub 2024 Jul 19.

本文引用的文献

1
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
2
Discharge patterns and functional organization of mammalian retina.
J Neurophysiol. 1953 Jan;16(1):37-68. doi: 10.1152/jn.1953.16.1.37.
3
Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
J Comput Neurosci. 2000 Jul-Aug;9(1):85-111. doi: 10.1023/a:1008990412183.
4
Inputs to directionally selective simple cells in macaque striate cortex.
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14488-93. doi: 10.1073/pnas.95.24.14488.
5
Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics.
Eur J Neurosci. 1998 Mar;10(3):926-40. doi: 10.1046/j.1460-9568.1998.00102.x.
6
Spectral-ripple representation of steady-state vowels in primary auditory cortex.
J Acoust Soc Am. 1998 May;103(5 Pt 1):2502-14. doi: 10.1121/1.422771.
7
Optimizing sound features for cortical neurons.
Science. 1998 May 29;280(5368):1439-43. doi: 10.1126/science.280.5368.1439.
8
Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches.
J Neurosci. 1998 May 15;18(10):3786-802. doi: 10.1523/JNEUROSCI.18-10-03786.1998.
9
A subspace reverse-correlation technique for the study of visual neurons.
Vision Res. 1997 Sep;37(17):2455-64. doi: 10.1016/s0042-6989(96)00247-7.
10
Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens.
J Neurophysiol. 1997 Aug;78(2):1045-61. doi: 10.1152/jn.1997.78.2.1045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验