Saxena I M, Brown R M, Dandekar T
Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA.
Phytochemistry. 2001 Aug;57(7):1135-48. doi: 10.1016/s0031-9422(01)00048-6.
A combined structural and functional model of the catalytic region of cellulose synthase is presented as a prototype for the action of processive beta-glycosyltransferases and other glycosyltransferases. A 285 amino acid segment of the Acetobacter xylinum cellulose synthase containing all the conserved residues in the globular region was subjected to protein modeling using the genetic algorithm. This region folds into a single large domain with a topology exhibiting a mixed alpha/beta structure. The predicted structure serves as a topological outline for the structure of this processive beta-glycosyltransferase. By incorporating new site-directed mutagenesis data and comparative analysis of the conserved aspartic acid residues and the QXXRW motif we deduce a number of functional implications based on the structure. This includes location of the UDP--glucose substrate-binding cavity, suggestions for the catalytic processing including positions of conserved and catalytic residues, secondary structure arrangement and domain organization. Comparisons to cellulose synthases from higher plants (genetic algorithm based model for cotton CelA1), data from neural network predictions (PHD), and to the recently experimentally determined structures of the non-processive SpsA and beta 4-galactosyltransferase retest and further validate our structure-function description of this glycosyltransferase.
本文提出了一种纤维素合酶催化区域的结构与功能相结合的模型,作为持续性β-糖基转移酶及其他糖基转移酶作用的原型。利用遗传算法对木醋杆菌纤维素合酶中包含球状区域所有保守残基的一段285个氨基酸的片段进行了蛋白质建模。该区域折叠成一个单一的大结构域,其拓扑结构呈现出α/β混合结构。预测的结构为这种持续性β-糖基转移酶的结构提供了拓扑轮廓。通过纳入新的定点诱变数据以及对保守天冬氨酸残基和QXXRW基序的比较分析,我们基于该结构推断出了一些功能含义。这包括UDP-葡萄糖底物结合腔的位置、对催化过程的建议,包括保守残基和催化残基的位置、二级结构排列和结构域组织。与高等植物纤维素合酶(基于遗传算法的棉花CelA1模型)、神经网络预测数据(PHD)以及最近通过实验确定的非持续性SpsA和β4-半乳糖基转移酶结构进行比较,重新检验并进一步验证了我们对这种糖基转移酶的结构-功能描述。