Burnet H, Bevengut M, Chakri F, Bou-Flores C, Coulon P, Gaytan S, Pasaro R, Hilaire G
Centre National de la Recherche Scientifique-Développement et Pathologie du Mouvement, Biologie des Rythmes et du Développement, 13402 Marseille Cedex 20, France.
J Neurosci. 2001 Jul 15;21(14):5212-21. doi: 10.1523/JNEUROSCI.21-14-05212.2001.
The abnormal metabolism of serotonin during the perinatal period alters respiratory network maturation at birth as revealed by comparing the monoamine oxidase A-deficient transgenic (Tg8) with the control (C3H) mice (Bou-Flores et al., 2000). To know whether these alterations occur only transiently or induce persistent respiratory dysfunction during adulthood, we studied the respiratory activity and regulations in adult C3H and Tg8 mice. First, plethysmographic and pneumotachographic analyses of breathing patterns revealed weaker tidal volumes and shorter inspiratory durations in Tg8 than in C3H mice. Second, electrophysiological studies showed that the firing activity of inspiratory medullary neurons and phrenic motoneurons is higher in Tg8 mice and that of the intercostal motoneurons in C3H mice. Third, histological studies indicated abnormally large cell bodies of Tg8 intercostal but not phrenic motoneurons. Finally, respiratory responses to hypoxia and lung inflation are weaker in Tg8 than in C3H mice. dl-p-chlorophenyl-alanine treatments applied to Tg8 mice depress the high serotonin level present during adulthood; the treated mice recover normal respiratory responses to both hypoxia and lung inflation, but their breathing parameters are not significantly affected. Therefore in Tg8 mice the high serotonin level occurring during the perinatal period alters respiratory network maturation and produces a permanent respiratory dysfunction, whereas the high serotonin level present in adults alters the respiratory regulatory processes. In conclusion, the metabolism of serotonin plays a crucial role in the maturation of the respiratory network and in both the respiratory activity and the respiratory regulations.
通过比较单胺氧化酶A缺陷转基因(Tg8)小鼠和对照(C3H)小鼠发现,围产期血清素的异常代谢会改变出生时呼吸网络的成熟(Bou-Flores等人,2000年)。为了了解这些改变是仅短暂发生还是会在成年期诱发持续性呼吸功能障碍,我们研究了成年C3H和Tg8小鼠的呼吸活动及调节情况。首先,对呼吸模式的体积描记法和流速描记法分析显示,Tg8小鼠的潮气量比C3H小鼠弱,吸气持续时间更短。其次,电生理研究表明,Tg8小鼠吸气性延髓神经元和膈运动神经元的放电活动较高,而C3H小鼠肋间运动神经元的放电活动较高。第三,组织学研究表明,Tg8小鼠肋间运动神经元而非膈运动神经元的细胞体异常大。最后,Tg8小鼠对低氧和肺膨胀的呼吸反应比C3H小鼠弱。对Tg8小鼠应用dl -对氯苯丙氨酸处理可降低成年期存在的高血清素水平;处理后的小鼠恢复了对低氧和肺膨胀的正常呼吸反应,但它们的呼吸参数未受到显著影响。因此,在Tg8小鼠中,围产期出现的高血清素水平会改变呼吸网络的成熟并产生永久性呼吸功能障碍,而成年期存在的高血清素水平会改变呼吸调节过程。总之,血清素的代谢在呼吸网络的成熟以及呼吸活动和呼吸调节中都起着至关重要的作用。