Suppr超能文献

通过与大肠杆菌基因阵列杂交揭示采采蝇肠道共生菌格氏嗜 Sodalis 的基因组大小测定和编码能力

Genome size determination and coding capacity of Sodalis glossinidius, an enteric symbiont of tsetse flies, as revealed by hybridization to Escherichia coli gene arrays.

作者信息

Akman L, Rio R V, Beard C B, Aksoy S

机构信息

Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St., New Haven, Connecticut 06510, USA.

出版信息

J Bacteriol. 2001 Aug;183(15):4517-25. doi: 10.1128/JB.183.15.4517-4525.2001.

Abstract

Recent molecular characterization of various microbial genomes has revealed differences in genome size and coding capacity between obligate symbionts and intracellular pathogens versus free-living organisms. Multiple symbiotic microorganisms have evolved with tsetse fly, the vector of African trypanosomes, over long evolutionary times. Although these symbionts are indispensable for tsetse fecundity, the biochemical and molecular basis of their functional significance is unknown. Here, we report on the genomic aspects of the secondary symbiont Sodalis glossinidius. The genome size of Sodalis is approximately 2 Mb. Its DNA is subject to extensive methylation and based on some of its conserved gene sequences has an A+T content of only 45%, compared to the typically AT-rich genomes of endosymbionts. Sodalis also harbors an extrachromosomal plasmid about 134 kb in size. We used a novel approach to gain insight into Sodalis genomic contents, i.e., hybridizing its DNA to macroarrays developed for Escherichia coli, a closely related enteric bacterium. In this analysis we detected 1,800 orthologous genes, corresponding to about 85% of the Sodalis genome. The Sodalis genome has apparently retained its genes for DNA replication, transcription, translation, transport, and the biosynthesis of amino acids, nucleic acids, vitamins, and cofactors. However, many genes involved in energy metabolism and carbon compound assimilation are apparently missing, which may indicate an adaptation to the energy sources available in the only nutrient of the tsetse host, blood. We present gene arrays as a rapid tool for comparative genomics in the absence of whole genome sequence to advance our understanding of closely related bacteria.

摘要

近期对各种微生物基因组的分子特征分析揭示了专性共生菌、细胞内病原体与自由生活生物在基因组大小和编码能力上的差异。多种共生微生物在漫长的进化过程中与非洲锥虫的传播媒介采采蝇共同进化。尽管这些共生菌对采采蝇的繁殖至关重要,但其功能意义的生化和分子基础尚不清楚。在此,我们报告次生共生菌格氏嗜 Sodalis 的基因组情况。Sodalis 的基因组大小约为 2 Mb。其 DNA 存在广泛甲基化,基于其一些保守基因序列,A+T 含量仅为 45%,而内共生菌的基因组通常富含 A+T。Sodalis 还含有一个大小约为 134 kb 的染色体外质粒。我们采用了一种新方法来深入了解 Sodalis 的基因组内容,即将其 DNA 与为密切相关的肠道细菌大肠杆菌开发的宏阵列杂交。在该分析中,我们检测到 1800 个直系同源基因,约占 Sodalis 基因组的 85%。Sodalis 基因组显然保留了其用于 DNA 复制、转录、翻译、转运以及氨基酸、核酸、维生素和辅因子生物合成的基因。然而,许多参与能量代谢和碳化合物同化的基因显然缺失,这可能表明它适应了采采蝇宿主唯一营养物质血液中可用的能量来源。我们展示了基因阵列作为在缺乏全基因组序列的情况下进行比较基因组学的快速工具,以增进我们对密切相关细菌的理解。

相似文献

2
TonB-dependent heme iron acquisition in the tsetse fly symbiont Sodalis glossinidius.
Appl Environ Microbiol. 2015 Apr;81(8):2900-9. doi: 10.1128/AEM.04166-14. Epub 2015 Feb 13.
3
A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7546-51. doi: 10.1073/pnas.131057498. Epub 2001 Jun 12.
4
Thermal stress responses of Sodalis glossinidius, an indigenous bacterial symbiont of hematophagous tsetse flies.
PLoS Negl Trop Dis. 2019 Nov 18;13(11):e0007464. doi: 10.1371/journal.pntd.0007464. eCollection 2019 Nov.
9
Conjugal DNA Transfer in Sodalis glossinidius, a Maternally Inherited Symbiont of Tsetse Flies.
mSphere. 2020 Nov 4;5(6):e00864-20. doi: 10.1128/mSphere.00864-20.

引用本文的文献

1
Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism.
Microorganisms. 2021 Nov 24;9(12):2422. doi: 10.3390/microorganisms9122422.
3
Dynamics of Insect-Microbiome Interaction Influence Host and Microbial Symbiont.
Front Microbiol. 2020 Jun 26;11:1357. doi: 10.3389/fmicb.2020.01357. eCollection 2020.
4
The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in .
mBio. 2019 Mar 5;10(2):e00009-19. doi: 10.1128/mBio.00009-19.
6
An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix.
PLoS Negl Trop Dis. 2014 Apr 24;8(4):e2691. doi: 10.1371/journal.pntd.0002691. eCollection 2014 Apr.
7
OmpA-mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut.
Appl Environ Microbiol. 2012 Nov;78(21):7760-8. doi: 10.1128/AEM.01858-12. Epub 2012 Aug 31.
8
Microbiome influences on insect host vector competence.
Trends Parasitol. 2011 Nov;27(11):514-22. doi: 10.1016/j.pt.2011.05.001. Epub 2011 Jun 21.
10
Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis.
Appl Environ Microbiol. 2007 Aug;73(15):4984-95. doi: 10.1128/AEM.00988-07. Epub 2007 Jun 15.

本文引用的文献

1
A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7546-51. doi: 10.1073/pnas.131057498. Epub 2001 Jun 12.
2
The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1883-8. doi: 10.1073/pnas.98.4.1883. Epub 2001 Jan 30.
3
Evolutionary dynamics of full genome content in Escherichia coli.
EMBO J. 2000 Dec 15;19(24):6637-43. doi: 10.1093/emboj/19.24.6637.
4
Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS.
Nature. 2000 Sep 7;407(6800):81-6. doi: 10.1038/35024074.
5
Secondary endosymbionts of psyllids have been acquired multiple times.
Curr Microbiol. 2000 Oct;41(4):300-4. doi: 10.1007/s002840010138.
6
Lifestyle evolution in symbiotic bacteria: insights from genomics.
Trends Ecol Evol. 2000 Aug;15(8):321-326. doi: 10.1016/s0169-5347(00)01902-9.
7
The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: homoptera).
Appl Environ Microbiol. 2000 Jul;66(7):2748-58. doi: 10.1128/AEM.66.7.2748-2758.2000.
8
Bacterial endosymbionts in animals.
Curr Opin Microbiol. 2000 Jun;3(3):270-5. doi: 10.1016/s1369-5274(00)00088-6.
9
Tsetse--A haven for microorganisms.
Parasitol Today. 2000 Mar;16(3):114-8. doi: 10.1016/s0169-4758(99)01606-3.
10
Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia.
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6814-9. doi: 10.1073/pnas.96.12.6814.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验