Suppr超能文献

热应激的细胞毒性和基因毒性后果取决于酿酒酵母中氧气的存在。

Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae.

作者信息

Davidson J F, Schiestl R H

机构信息

Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

J Bacteriol. 2001 Aug;183(15):4580-7. doi: 10.1128/JB.183.15.4580-4587.2001.

Abstract

Lethal heat stress generates oxidative stress in Saccharomyces cerevisiae, and anaerobic cells are several orders of magnitude more resistant than aerobic cells to a 50 degrees C heat shock. Here we characterize the oxidative effects of this heat stress. The thermoprotective effect in anaerobic cells was not due to expression of HSP104 or any other heat shock gene, raising the possibility that the toxicity of lethal heat shock is due mainly to oxidative stress. Aerobic but not anaerobic heat stress caused elevated frequencies of forward mutations and interchromosomal DNA recombination. Oxidative DNA repair glycosylase-deficient strains under aerobic conditions showed a powerful induction of forward mutation frequencies compared to wild-type cells, which was completely abolished under anaerobiosis. We also investigated potential causes for this oxygen-dependent heat shock-induced genetic instability. Levels of sulfhydryl groups, dominated mainly by the high levels of the antioxidant glutathione (reduced form) and levels of vitamin E, decreased after aerobic heat stress but not after anaerobic heat stress. Aerobic heat stress also led to an increase in mitochondrial membrane disruption of several hundredfold, which was 100-fold reduced under anaerobic conditions.

摘要

致死性热应激在酿酒酵母中产生氧化应激,并且厌氧细胞对50摄氏度热激的抗性比需氧细胞高几个数量级。在此我们描述这种热应激的氧化效应。厌氧细胞中的热保护作用并非由于HSP104或任何其他热休克基因的表达,这增加了致死性热激毒性主要归因于氧化应激的可能性。需氧而非厌氧热应激导致正向突变和染色体间DNA重组的频率升高。与野生型细胞相比,需氧条件下氧化DNA修复糖基化酶缺陷型菌株显示出正向突变频率的强烈诱导,而在厌氧条件下这种诱导完全消除。我们还研究了这种氧依赖性热激诱导的遗传不稳定性的潜在原因。巯基水平主要由高水平的抗氧化剂谷胱甘肽(还原形式)和维生素E水平主导,需氧热应激后降低,但厌氧热应激后未降低。需氧热应激还导致线粒体膜破坏增加数百倍,在厌氧条件下这种破坏减少100倍。

相似文献

4
Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase.
Arch Biochem Biophys. 1998 Nov 1;359(1):99-106. doi: 10.1006/abbi.1998.0896.
5
Hsp104 responds to heat and oxidative stress with different intracellular localization in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 1998 Jul 30;248(3):542-7. doi: 10.1006/bbrc.1998.9008.
9
Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116-21. doi: 10.1073/pnas.93.10.5116.

引用本文的文献

2
MetA is a "thermal fuse" that inhibits growth and protects Escherichia coli at elevated temperatures.
Cell Rep. 2022 Aug 30;40(9):111290. doi: 10.1016/j.celrep.2022.111290.
3
Water is a preservative of microbes.
Microb Biotechnol. 2022 Jan;15(1):191-214. doi: 10.1111/1751-7915.13980. Epub 2021 Dec 22.
7
Improvement of Thermotolerance of by Genes for Reactive Oxygen Species-Scavenging Enzymes and Heat Shock Proteins.
Front Microbiol. 2020 Jan 30;10:3073. doi: 10.3389/fmicb.2019.03073. eCollection 2019.
8
Rational synthetic combination genetic devices boosting high temperature ethanol fermentation.
Synth Syst Biotechnol. 2017 Apr 29;2(2):121-129. doi: 10.1016/j.synbio.2017.04.003. eCollection 2017 Jun.
9
Oxidative stress and antioxidant response in a thermotolerant yeast.
Braz J Microbiol. 2017 Apr-Jun;48(2):326-332. doi: 10.1016/j.bjm.2016.11.005. Epub 2017 Jan 3.
10
Genetic and physiological alterations occurring in a yeast population continuously propagated at increasing temperatures with cell recycling.
World J Microbiol Biotechnol. 2007 Dec;23(12):1667. doi: 10.1007/s11274-007-9414-7. Epub 2007 May 19.

本文引用的文献

1
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404. doi: 10.1128/MMBR.63.2.349-404.1999.
5
Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase.
Arch Biochem Biophys. 1998 Nov 1;359(1):99-106. doi: 10.1006/abbi.1998.0896.
6
Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae.
Biochimie. 1997 Oct;79(9-10):559-66. doi: 10.1016/s0300-9084(97)82004-4.
8
Superoxide production by the mitochondrial respiratory chain.
Biosci Rep. 1997 Feb;17(1):3-8. doi: 10.1023/a:1027374931887.
9
Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance.
Microbiology (Reading). 1996 Oct;142 ( Pt 10):2975-82. doi: 10.1099/13500872-142-10-2975.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验