Suppr超能文献

燃气和电烹饪产生的超细颗粒和氮氧化物。

Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

作者信息

Dennekamp M, Howarth S, Dick C A, Cherrie J W, Donaldson K, Seaton A

机构信息

Department of Environmental and Occupational Medicine, University of Aberdeen Medical School, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.

出版信息

Occup Environ Med. 2001 Aug;58(8):511-6. doi: 10.1136/oem.58.8.511.

Abstract

OBJECTIVES

To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.

METHODS

Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.

RESULTS

High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.

CONCLUSIONS

Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

摘要

目的

测量使用燃气和电力烹饪产生的直径小于100纳米的颗粒物浓度以及氮氧化物浓度,对通风不良的厨房中可能存在的健康危害进行评论。

方法

使用燃气炉、电炉、烤架和烤箱进行实验,以比较不同的烹饪程序。氮氧化物(NO(x))通过化学发光ML9841A NO(x)分析仪进行测量。使用TSI 3934扫描迁移率粒径分析仪测量粒径范围为10 - 500纳米的气溶胶的平均数量浓度和粒径分布。

结果

燃气燃烧、油炸以及烹饪高脂肪食物会产生高浓度的颗粒物。电炉灶和烤架表面也可能产生颗粒物。在燃气燃烧是颗粒物最重要来源的实验中,大多数颗粒物粒径范围为15 - 40纳米。当在燃气炉或电炉上煎培根时,产生的颗粒物直径较大,粒径范围为50 - 100纳米。实验过程中产生的较小颗粒物由于凝聚作用随着时间推移粒径会增大。使用燃气烹饪时会产生大量的NO(X);四个炉头燃烧15分钟会产生5分钟的峰值,二氧化氮约为1000 ppb,一氧化氮约为2000 ppb。

结论

在通风不良的厨房中烹饪可能会产生潜在有毒浓度的大量颗粒物。燃气烹饪还可能产生非常高浓度的氮氧化物,并且在没有抽气装置且通风不良的情况下,可能会达到预期产生不良健康影响的浓度。虽然预计接触NO(x)会对呼吸系统产生影响,但最近的流行病学研究表明不能排除对心脏的影响,对此需要进一步调查。

相似文献

1
Ultrafine particles and nitrogen oxides generated by gas and electric cooking.
Occup Environ Med. 2001 Aug;58(8):511-6. doi: 10.1136/oem.58.8.511.
2
Charged particles and cluster ions produced during cooking activities.
Sci Total Environ. 2014 Nov 1;497-498:516-526. doi: 10.1016/j.scitotenv.2014.08.011. Epub 2014 Aug 23.
3
4
Source strengths of ultrafine and fine particles due to cooking with a gas stove.
Environ Sci Technol. 2004 Apr 15;38(8):2304-11. doi: 10.1021/es0306260.
5
Real-time monitoring of particles, PAH, and CO in an occupied townhouse.
Appl Occup Environ Hyg. 2000 Jan;15(1):39-47. doi: 10.1080/104732200301836.
8
Simulated restaurant cook exposure to emissions of PAHs, mutagenic aldehydes, and particles from frying bacon.
J Occup Environ Hyg. 2013;10(3):122-31. doi: 10.1080/15459624.2012.755864.
9
Stimulation of IL-8 release from epithelial cells by gas cooker PM(10): a pilot study.
Occup Environ Med. 2001 Mar;58(3):208-10. doi: 10.1136/oem.58.3.208.

引用本文的文献

1
Measured air quality impacts after teaching parents about cooking ventilation with a video: a pilot study.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):223-232. doi: 10.1038/s41370-024-00730-6. Epub 2024 Nov 9.
2
Reconsidering gas as clean energy: Switching to electricity for household cooking to reduce NO-attributed disease burden.
Eco Environ Health. 2023 Nov 17;3(2):174-182. doi: 10.1016/j.eehl.2023.10.003. eCollection 2024 Jun.
3
Cooking oil fume exposure and Lung-RADS distribution among school cafeteria workers of South Korea.
Ann Occup Environ Med. 2024 Jan 31;36:e2. doi: 10.35371/aoem.2024.36.e2. eCollection 2024.
5
Photochemical renoxification on commercial indoor photoactive paint.
Sci Rep. 2023 Oct 19;13(1):17835. doi: 10.1038/s41598-023-44927-5.
6
Climate and health benefits of a transition from gas to electric cooking.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301061120. doi: 10.1073/pnas.2301061120. Epub 2023 Aug 15.
7
Cooking methods and kitchen ventilation availability, usage, perceived performance and potential in Canadian homes.
J Expo Sci Environ Epidemiol. 2023 May;33(3):439-447. doi: 10.1038/s41370-023-00543-z. Epub 2023 Apr 15.
8
Impacts of solid fuel use versus smoking on life expectancy at age 30 years in the rural and urban Chinese population: a prospective cohort study.
Lancet Reg Health West Pac. 2023 Feb 13;32:100705. doi: 10.1016/j.lanwpc.2023.100705. eCollection 2023 Mar.
10
Vertically-resolved indoor measurements of air pollution during Chinese cooking.
Environ Sci Ecotechnol. 2022 Jun 30;12:100200. doi: 10.1016/j.ese.2022.100200. eCollection 2022 Oct.

本文引用的文献

1
Stimulation of IL-8 release from epithelial cells by gas cooker PM(10): a pilot study.
Occup Environ Med. 2001 Mar;58(3):208-10. doi: 10.1136/oem.58.3.208.
2
Acute respiratory effects of particles: mass or number?
Occup Environ Med. 2001 Mar;58(3):154-9. doi: 10.1136/oem.58.3.154.
3
Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany).
Sci Total Environ. 2000 Apr 24;250(1-3):51-62. doi: 10.1016/s0048-9697(00)00361-2.
4
Real-time monitoring of particles, PAH, and CO in an occupied townhouse.
Appl Occup Environ Hyg. 2000 Jan;15(1):39-47. doi: 10.1080/104732200301836.
5
Chinese food cooking and lung cancer in women nonsmokers.
Am J Epidemiol. 2000 Jan 15;151(2):140-7. doi: 10.1093/oxfordjournals.aje.a010181.
6
Characterization of indoor particle sources: A study conducted in the metropolitan Boston area.
Environ Health Perspect. 2000 Jan;108(1):35-44. doi: 10.1289/ehp.0010835.
7
Air pollution and incidence of cardiac arrhythmia.
Epidemiology. 2000 Jan;11(1):11-7. doi: 10.1097/00001648-200001000-00005.
9
Identification of carcinogens in cooking oil fumes.
Environ Res. 1999 Jul;81(1):18-22. doi: 10.1006/enrs.1998.3876.
10
Air pollution, pollens, and daily admissions for asthma in London 1987-92.
Thorax. 1998 Oct;53(10):842-8. doi: 10.1136/thx.53.10.842.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验