Visser H, Anxolabéhère-Mallart E, Bergmann U, Glatzel P, Robblee J H, Cramer S P, Girerd J J, Sauer K, Klein M P, Yachandra V K
Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Am Chem Soc. 2001 Jul 25;123(29):7031-9. doi: 10.1021/ja004306h.
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kbeta X-ray emission spectroscopy (Kbeta XES). The two manganese compounds are the di-mu-oxo compound L'2Mn(III)O2Mn(IV)L'23, where L' is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630) and the linear mono-mu-oxo compound LMn(III)OMn(III)L2, where L- is the monoanionic N,N-bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222-1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the Mn(IV)Mn(IV) species for the di-mu-oxo compound and the Mn(III)Mn(IV) and Mn(IV)Mn(IV) species for the mono-mu-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-mu-oxo and linear mono-mu-oxo Mn-Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kbeta XES spectra show less dependence on ligand environment. The Kbeta1,3 peak energies are comparable for the di-mu-oxo and mono-mu-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kbeta XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms.
研究了两种处于不同氧化态的结构同源锰化合物,以探究氧化态和配体环境对锰K边X射线吸收近边结构(XANES)和锰KβX射线发射光谱(KβXES)的相对影响。这两种锰化合物分别是二-μ-氧代化合物L'2Mn(III)O2Mn(IV)L'23,其中L'为1,10-菲咯啉(库珀,S.R.;卡尔文,M.《美国化学会志》1977年,99卷,6623 - 6630页),以及线性单-μ-氧代化合物LMn(III)OMn(III)L2,其中L-为单阴离子N,N-双(2-吡啶甲基)-N'-水杨基亚甲基-1,2-二氨基乙烷配体(霍纳,O.;安克索拉贝埃雷-马勒特,E.;沙洛,M.F.;切尔塔诺夫,L.;吉耶姆,J.;马蒂奥利,T.A.;布萨克,A.;吉尔德,J.-J.《无机化学》1999年,38卷,1222 - 1232页)。在乙腈中进行制备性大量电解以获得化合物的更高氧化态:二-μ-氧代化合物的Mn(IV)Mn(IV)物种,以及单-μ-氧代化合物的Mn(III)Mn(IV)和Mn(IV)Mn(IV)物种。红外、紫外/可见、电子顺磁共振和扩展X射线吸收精细结构光谱用于确定各种样品溶液的纯度和完整性。当配体环境保持相似时,氧化后锰K边XANES光谱向更高能量移动。然而,仅改变配体环境时也会观察到能量移动。这是通过比较处于等效氧化态的二-μ-氧代和线性单-μ-氧代锰-锰部分来实现的,它们代表了主要的结构变化。由于配体环境的重大变化导致的能量移动幅度可能与氧化态变化的幅度一样大。因此,在不考虑配体环境的性质和化合物的整体结构的情况下,将锰K边能量与锰氧化态相关联时必须谨慎。与锰K边XANES不同,KβXES光谱对配体环境的依赖性较小。处于等效氧化态的二-μ-氧代和单-μ-氧代化合物的Kβ1,3峰能量相当。两种不同化合物因氧化而观察到的能量移动也相似。结合KβXES对XANES预边和主边特征的不同行为进行研究,提供了有关锰原子氧化态和配体环境特征的重要信息。