Yehia Salma, Wang Jimin, Brudvig Gary W, Gunner M R, Brooks Bernard R, Amin Muhamed
Department of Biotechnology and Biomolecular Chemistry, Faculty of Science, Cairo University, Giza 11221, Egypt.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Biochim Biophys Acta Bioenerg. 2025 Apr 1;1866(2):149531. doi: 10.1016/j.bbabio.2024.149531. Epub 2024 Dec 16.
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S state and those following two-flashes which are poised in the penultimate S oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S and S states.
光系统II(PSII)是一种独特的天然催化剂,它在生理pH值下利用水中丰富的元素将太阳能转化为化学能。了解其反应机制将有助于设计用于高效太阳能转换的仿生人工催化剂。锰氧钙簇在将两个水分子氧化成氧气并将质子释放到内腔以及将电子释放以驱动PSII反应之前,会循环通过五种氧化程度逐渐增加的中间体。锰的配位以及放氧复合体(OEC)的电子结构会随着这些中间体而发生变化。因此,获得每种催化中间体的高分辨率结构将有助于揭示反应机制。虽然从传统X射线晶体学中获得了有价值的结构信息,但传统X射线晶体学的时间分辨率限制了对寿命较短的反应中间体的分析。串行飞秒X射线晶体学(SFX)通过使用超短激光脉冲进行成像来克服辐射损伤,已被广泛用于研究PSII中的水分解中间体。在这里,我们回顾了SFX出现前后水分解反应的技术现状以及我们对其的理解。此外,我们基于锰配位化学分析了在暗适应的S态以及经过两次闪光后处于倒数第二个S氧化态的多个X射线自由电子激光(XFEL)结构中可能的锰配位情况。最后,我们总结了SFX对我们理解S态和S态结构的主要贡献。