Fransson Thomas, Chatterjee Ruchira, Fuller Franklin D, Gul Sheraz, Weninger Clemens, Sokaras Dimosthenis, Kroll Thomas, Alonso-Mori Roberto, Bergmann Uwe, Kern Jan, Yachandra Vittal K, Yano Junko
Stanford PULSE Institute, SLAC National Accelerator Laboratory , Menlo Park , California United States.
Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California United States.
Biochemistry. 2018 Aug 7;57(31):4629-4637. doi: 10.1021/acs.biochem.8b00325. Epub 2018 Jun 28.
Serial femtosecond crystallography (SFX) using the ultrashort X-ray pulses from a X-ray free-electron laser (XFEL) provides a new way of collecting structural data at room temperature that allows for following the reaction in real time after initiation. XFEL experiments are conducted in a shot-by-shot mode as the sample is destroyed and replenished after each X-ray pulse, and therefore, monitoring and controlling the data quality by using in situ diagnostic tools is critical. To study metalloenzymes, we developed the use of simultaneous collection of X-ray diffraction of crystals along with X-ray emission spectroscopy (XES) data that is used as a diagnostic tool for crystallography, by monitoring the chemical state of the metal catalytic center. We have optimized data analysis methods and sample delivery techniques for fast and active feedback to ensure the quality of each batch of samples and the turnover of the catalytic reaction caused by reaction triggering methods. Here, we describe this active in situ feedback system using Photosystem II as an example that catalyzes the oxidation of HO to O at the MnCaO active site. We used the first moments of the Mn Kβ emission spectra, which are sensitive to the oxidation state of Mn, as the primary diagnostics. This approach is applicable to different metalloproteins to determine the integrity of samples and follow changes in the chemical states of the reaction that can be initiated by light or activated by substrates and offers a metric for determining the diffraction images that are used for the final data sets.
利用来自X射线自由电子激光(XFEL)的超短X射线脉冲进行的串行飞秒晶体学(SFX)提供了一种在室温下收集结构数据的新方法,该方法能够在反应启动后实时跟踪反应过程。由于每次X射线脉冲后样品都会被破坏并补充,XFEL实验是以逐次拍摄的模式进行的,因此,使用原位诊断工具监测和控制数据质量至关重要。为了研究金属酶,我们开发了一种方法,通过监测金属催化中心的化学状态,同时收集晶体的X射线衍射数据以及用作晶体学诊断工具的X射线发射光谱(XES)数据。我们优化了数据分析方法和样品输送技术,以实现快速且有效的反馈,确保每批样品的质量以及由反应触发方法引起的催化反应的周转。在此,我们以光系统II为例描述这种主动原位反馈系统,光系统II在MnCaO活性位点催化H₂O氧化为O₂。我们将对Mn氧化态敏感的Mn Kβ发射光谱的一阶矩用作主要诊断指标。这种方法适用于不同的金属蛋白,以确定样品的完整性并跟踪可由光引发或由底物激活的反应化学状态的变化,还为确定用于最终数据集的衍射图像提供了一个度量标准。