Suppr超能文献

独特型网络结构:渗流与标度行为

Architecture of idiotypic networks: percolation and scaling behavior.

作者信息

Brede M, Behn U

机构信息

Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011908. doi: 10.1103/PhysRevE.64.011908. Epub 2001 Jun 20.

Abstract

We investigate a model where idiotypes (characterizing B lymphocytes and antibodies of an immune system) and anti-idiotypes are represented by complementary bit strings of a given length d allowing for a number of mismatches (matching rules). In this model, the vertices of the hypercube in dimension d represent the potential repertoire of idiotypes. A random set of (with probability p) occupied vertices corresponds to the expressed repertoire of idiotypes at a given moment. Vertices of this set linked by the above matching rules build random clusters. We give a structural and statistical characterization of these clusters, or in other words of the architecture of the idiotypic network. Increasing the probability p one finds at a critical p a percolation transition where for the first time a large connected graph occurs with probability 1. Increasing p further, there is a second transition above which the repertoire is complete in the sense that any newly introduced idiotype finds a complementary anti-idiotype. We introduce structural characteristics such as the mass distribution and the fragmentation rate for random clusters, and determine the scaling behavior of the cluster size distribution near the percolation transition, including finite size corrections. We find that slightly above the percolation transition the large connected cluster (the central part of the idiotypic network) consists typically of one highly connected part and a number of weakly connected constituents and coexists with a number of small, isolated clusters. This is in accordance with the picture of a central and a peripheral part of the idiotypic network and gives some support to idealized architectures of the central part used in recent dynamical mean field models.

摘要

我们研究了一个模型,其中独特型(表征免疫系统中的B淋巴细胞和抗体)和抗独特型由给定长度为d的互补位串表示,允许存在一定数量的错配(匹配规则)。在这个模型中,d维超立方体的顶点代表独特型的潜在库。一组随机的(概率为p)被占据的顶点对应于给定时刻独特型的表达库。通过上述匹配规则相连的该集合中的顶点形成随机簇。我们给出了这些簇的结构和统计特征,或者换句话说,给出了独特型网络的架构。增加概率p,在临界p处会发现一个渗流转变,此时首次出现一个以概率1存在的大连通图。进一步增加p,会有第二个转变,在这个转变之上,从任何新引入的独特型都能找到互补抗独特型的意义上来说,库是完整的。我们引入了诸如随机簇的质量分布和碎片化率等结构特征,并确定了渗流转变附近簇大小分布的标度行为,包括有限尺寸修正。我们发现,略高于渗流转变时,大连通簇(独特型网络的中心部分)通常由一个高度连通的部分和一些弱连通的成分组成,并与一些小的孤立簇共存。这与独特型网络的中心和外围部分的图景一致,并为最近的动态平均场模型中使用的中心部分的理想化架构提供了一些支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验