Behn Ulrich
Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany.
Immunol Rev. 2007 Apr;216:142-52. doi: 10.1111/j.1600-065X.2006.00496.x.
Idiotypic networks, after being a dominating paradigm for more than a decade, have fallen out of fashion in parallel with the rapid success of molecular immunobiology. Today signs of a possible renaissance in idiotypic network studies are visible. For system biologists and also for physicists, the network idea remains attractive. Herein, a short account of the historical development of the paradigm is given. The necessary technical and conceptual ingredients for a theoretical description of idiotypic networks are briefly reviewed, and previous approaches are discussed. We also describe a minimalistic model developed in our group that allows for understanding the random evolution toward a highly non-trivial complex architecture. In the network, a connected large cluster of idiotype clones and many disconnected ones coexist, thus resembling the notion of central and peripheral parts proposed in the 'second-generation' version of the paradigm. The connected cluster consists of groups of idiotypic clones with clearly distinct statistical properties. The simplicity of the model allows for calculating the size of the groups and the number of inter- and intragroup links, which define the architecture. Aspects of idiotypic interactions in experimental medicine are discussed, along with the challenges to theory and experimentation.
独特型网络在十多年间一直是主流范式,但随着分子免疫生物学的迅速成功,它已不再流行。如今,独特型网络研究可能复兴的迹象已显现。对于系统生物学家乃至物理学家而言,网络概念仍然具有吸引力。在此,对该范式的历史发展作一简要介绍。简要回顾独特型网络理论描述所需的技术和概念要素,并讨论先前的方法。我们还描述了我们团队开发的一个简约模型,该模型有助于理解向高度非平凡复杂架构的随机演化。在该网络中,一个相连的独特型克隆大簇和许多不相连的克隆共存,这类似于该范式“第二代”版本中提出的中心部分和外围部分的概念。相连的簇由具有明显不同统计特性的独特型克隆组组成。该模型的简单性使得能够计算这些组的大小以及组间和组内连接的数量,这些连接定义了架构。文中还讨论了实验医学中独特型相互作用的各个方面,以及对理论和实验的挑战。