Zhang D Y, Brandwein M, Hsuih T, Li H B
Department of Pathology, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10021, USA.
Mol Diagn. 2001 Jun;6(2):141-50. doi: 10.1054/modi.2001.25323.
We have developed a novel isothermal DNA amplification method with an amplification mechanism quite different from conventional PCR. This method uses a specially designed circular probe (C-probe) in which the 3' and 5' ends are brought together in juxtaposition by hybridization to a target. The two ends are then covalently linked by a T4 DNA ligase in a target-dependent manner, producing a closed DNA circle. In the presence of an excess of primers (forward and reverse primers), a DNA polymerase extends the bound forward primer along the C-probe and displaces the downstream strand, generating a multimeric single-stranded DNA (ssDNA), analogous to the "rolling circle" replication of bacteriophages in vivo. This multimeric ssDNA then serves as a template for multiple reverse primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. This ramification process continues until all ssDNAs become double-stranded, resulting in an exponential amplification that distinguishes itself from the previously described nonexponential rolling circle amplification. In this report, we prove the principle of ramification amplification. By using a unique bacteriophage DNA polymerase, Ø29 DNA Polymerase, that has an intrinsic high processivity, we are able to achieve significant amplification within 1 hour at 35 degrees C. In addition, we applied this technique for in situ detection of Epstein-Barr viral sequences in Raji cells.
我们开发了一种新型等温DNA扩增方法,其扩增机制与传统聚合酶链式反应(PCR)截然不同。该方法使用一种特殊设计的环形探针(C-探针),其3'端和5'端通过与靶标杂交而并列在一起。然后,两端由T4 DNA连接酶以靶标依赖性方式共价连接,形成一个封闭的DNA环。在存在过量引物(正向引物和反向引物)的情况下,DNA聚合酶沿着C-探针延伸结合的正向引物并置换下游链,产生多聚体单链DNA(ssDNA),类似于噬菌体在体内的“滚环”复制。然后,这种多聚体ssDNA作为多个反向引物杂交、延伸和置换下游DNA的模板,产生一个大的分支状DNA复合物。这个分支过程持续进行,直到所有的ssDNA都变成双链,从而实现指数扩增,这使其有别于先前描述的非指数滚环扩增。在本报告中,我们证明了分支扩增的原理。通过使用具有内在高持续合成能力的独特噬菌体DNA聚合酶——φ29 DNA聚合酶,我们能够在35摄氏度下1小时内实现显著扩增。此外,我们将这项技术应用于Raji细胞中爱泼斯坦-巴尔病毒序列的原位检测。