Suppr超能文献

缅因州森林土壤中高亲和力一氧化碳氧化菌的富集。

Enrichment of high-affinity CO oxidizers in Maine forest soil.

作者信息

Hardy K R, King G M

机构信息

Daring Marine Center, University of Maine, Walpole, Maine 04573, USA.

出版信息

Appl Environ Microbiol. 2001 Aug;67(8):3671-6. doi: 10.1128/AEM.67.8.3671-3676.2001.

Abstract

Carboxydotrophic activity in forest soils was enriched by incubation in a flowthrough system with elevated concentrations of headspace CO (40 to 400 ppm). CO uptake increased substantially over time, while the apparent K(m) ((app)K(m)) for uptake remained similar to that of unenriched soils (<10 to 20 ppm). Carboxydotrophic activity was transferred to and further enriched in sterile sand and forest soil. The (app)K(m)s for secondary and tertiary enrichments remained similar to values for unenriched soils. CO uptake by enriched soil and freshly collected forest soil was inhibited at headspace CO concentrations greater than about 1%. A novel isolate, COX1, obtained from the enrichments was inhibited similarly. However, in contrast to extant carboxydotrophs, COX1 consumed CO with an (app)K(m) of about 15 ppm, a value comparable to that of fresh soils. Phylogenetic analysis based on approximately 1,200 bp of its 16S rRNA gene sequence suggested that the isolate is an alpha-proteobacterium most closely related to the genera Pseudaminobacter, Aminobacter, and Chelatobacter (98.1 to 98.3% sequence identity).

摘要

通过在顶空CO浓度升高(40至400 ppm)的流通系统中培养,森林土壤中的羧基营养活性得到了增强。随着时间的推移,CO吸收量大幅增加,而吸收的表观K(m)((app)K(m))与未富集土壤(<10至20 ppm)的相似。羧基营养活性转移至无菌沙子和森林土壤中并进一步富集。二次和三次富集的(app)K(m)值仍与未富集土壤的值相似。当顶空CO浓度大于约1%时,富集土壤和新采集的森林土壤对CO的吸收受到抑制。从富集培养物中获得的一种新型菌株COX1也受到类似抑制。然而,与现存的羧基营养菌不同,COX1消耗CO的(app)K(m)约为15 ppm,这一数值与新鲜土壤的相当。基于其16S rRNA基因序列约1200 bp的系统发育分析表明,该菌株是一种α-变形菌,与假氨基杆菌属、氨基杆菌属和螯合杆菌属关系最为密切(序列同一性为98.1%至98.3%)。

相似文献

1
Enrichment of high-affinity CO oxidizers in Maine forest soil.
Appl Environ Microbiol. 2001 Aug;67(8):3671-6. doi: 10.1128/AEM.67.8.3671-3676.2001.
2
Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria.
FEMS Microbiol Ecol. 2006 Apr;56(1):1-7. doi: 10.1111/j.1574-6941.2006.00065.x.
5
Attributes of atmospheric carbon monoxide oxidation by Maine forest soils.
Appl Environ Microbiol. 1999 Dec;65(12):5257-64. doi: 10.1128/AEM.65.12.5257-5264.1999.
6
7
Soil-atmosphere CO exchanges and microbial biogeochemistry of CO transformations in a Brazilian agricultural ecosystem.
Appl Environ Microbiol. 2002 Sep;68(9):4480-5. doi: 10.1128/AEM.68.9.4480-4485.2002.
8
Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts.
Antonie Van Leeuwenhoek. 2007 Feb;91(2):191-6. doi: 10.1007/s10482-006-9103-9.
9
Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil.
Syst Appl Microbiol. 2003 Sep;26(3):445-52. doi: 10.1078/072320203322497482.

引用本文的文献

1
Carbon monoxide-oxidising Pseudomonadota on volcanic deposits.
Environ Microbiome. 2025 Jan 26;20(1):12. doi: 10.1186/s40793-025-00672-y.
2
Microbial oxidation of atmospheric trace gases.
Nat Rev Microbiol. 2022 Sep;20(9):513-528. doi: 10.1038/s41579-022-00724-x. Epub 2022 Apr 12.
3
Biomimetic CO oxidation below -100 °C by a nitrate-containing metal-free microporous system.
Nat Commun. 2021 Oct 15;12(1):6033. doi: 10.1038/s41467-021-26157-3.
5
Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments.
Environ Microbiol. 2015 Dec;17(12):5023-35. doi: 10.1111/1462-2920.12912. Epub 2015 Jul 23.
6
Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria.
Front Microbiol. 2014 Dec 17;5:698. doi: 10.3389/fmicb.2014.00698. eCollection 2014.
8
Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus.
Appl Environ Microbiol. 2007 Feb;73(4):1266-76. doi: 10.1128/AEM.01724-06. Epub 2006 Dec 1.

本文引用的文献

2
Notes. Microorganisms responsible for the oxidation of carbon monoxide in soil.
Environ Sci Technol. 1982 May 1;16(5):300-1. doi: 10.1021/es00099a013.
3
Streptomyces thermoautotrophicus sp. nov., a Thermophilic CO- and H(2)-Oxidizing Obligate Chemolithoautotroph.
Appl Environ Microbiol. 1990 Dec;56(12):3727-34. doi: 10.1128/aem.56.12.3727-3734.1990.
4
Efficacy of phospholipid analysis in determining microbial biomass in sediments.
Appl Environ Microbiol. 1989 Nov;55(11):2888-93. doi: 10.1128/aem.55.11.2888-2893.1989.
5
Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil.
Appl Environ Microbiol. 1981 Aug;42(2):211-5. doi: 10.1128/aem.42.2.211-215.1981.
6
Carbon monoxide metabolism in roadside soils.
Appl Environ Microbiol. 1981 May;41(5):1192-201. doi: 10.1128/aem.41.5.1192-1201.1981.
7
Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil.
Appl Environ Microbiol. 1980 Sep;40(3):437-45. doi: 10.1128/aem.40.3.437-445.1980.
8
Carbon monoxide oxidation by algae.
Biochim Biophys Acta. 1962 Jul 30;62:45-62. doi: 10.1016/0006-3002(62)90491-2.
9
Attributes of atmospheric carbon monoxide oxidation by Maine forest soils.
Appl Environ Microbiol. 1999 Dec;65(12):5257-64. doi: 10.1128/AEM.65.12.5257-5264.1999.
10
High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph.
Appl Environ Microbiol. 1999 Mar;65(3):1009-14. doi: 10.1128/AEM.65.3.1009-1014.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验