Just W, Bose M, Bose S, Engel H, Schöll E
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026219. doi: 10.1103/PhysRevE.64.026219. Epub 2001 Jul 23.
Pattern formation in semiconductor heterostructures is studied on the basis of a spatially two-dimensional model of reaction-diffusion type. In particular, we investigate the neighborhood of a codimension-two Turing-Hopf instability by analytical methods. Amplitude equations are derived which predict the absence of mixed modes but extended ranges of bistability between homogeneous oscillatory states and hexagonal Turing patterns. Our results are confirmed by numerical simulations. The features are not confined to a neighborhood of the bifurcation point so that the conclusions of the weakly nonlinear analysis explain the observations in large portions of the parameter space at least qualitatively
基于反应扩散类型的二维空间模型研究了半导体异质结构中的图案形成。特别地,我们通过解析方法研究了二维余维的图灵 - 霍普夫不稳定性的邻域。推导了振幅方程,该方程预测不存在混合模式,但在均匀振荡状态和六边形图灵图案之间存在扩展的双稳性范围。我们的结果通过数值模拟得到了证实。这些特征并不局限于分岔点的邻域,因此弱非线性分析的结论至少在定性上解释了参数空间大部分区域的观测结果。