Tian Canrong
Department of Basic Sciences, Yancheng Institute of Technology, Yancheng, 224003, China.
Bull Math Biol. 2015 Nov;77(11):2072-85. doi: 10.1007/s11538-015-0116-2. Epub 2015 Oct 28.
A fractional power of the Laplacian is introduced to a reaction-diffusion system to describe water's anomalous diffusion in a semiarid vegetation model. Our linear stability analysis shows that the wavenumber of Turing pattern increases with the superdiffusive exponent. A weakly nonlinear analysis yields a system of amplitude equations, and the analysis of these amplitude equations shows that the spatial patterns are asymptotic stable due to the supercritical Turing bifurcation. Numerical simulations exhibit a bistable regime composed of hexagons and stripes, which confirm our analytical results. Moreover, the characteristic length of the emergent spatial pattern is consistent with the scale of vegetation patterns observed in field studies.
将拉普拉斯算子的分数幂引入到一个反应扩散系统中,以描述半干旱植被模型中水的反常扩散。我们的线性稳定性分析表明,图灵斑图的波数随超扩散指数增加。弱非线性分析产生了一个振幅方程组,对这些振幅方程的分析表明,由于超临界图灵分岔,空间斑图是渐近稳定的。数值模拟展示了由六边形和条纹组成的双稳区域,这证实了我们的分析结果。此外,出现的空间斑图的特征长度与实地研究中观察到的植被斑图尺度一致。