Camarasa C, Bidard F, Bony M, Barre P, Dequin S
UMR Sciences pour l'Oenologie-Laboratoire de Microbiologie et Technologie des Fermentations, Institut National de la Recherche Agronomique, F-34060 Montpellier Cedex 1, France.
Appl Environ Microbiol. 2001 Sep;67(9):4144-51. doi: 10.1128/AEM.67.9.4144-4151.2001.
In Saccharomyces cerevisiae, L-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encoding Schizosaccharomyces pombe malate permease, markedly increased L-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes), L-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters: Vmax = 8.7 nmol/mg/min; Km = 1.6 mM) and some simple diffusion of the undissociated L-malic acid (Kd = 0.057 min(-1)). As total L-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. L-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the DeltapH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to L-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibited L-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated L-malic acid import in S. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport.
在酿酒酵母中,L-苹果酸的转运不是由载体介导的,而是限于未解离酸的缓慢、简单扩散。编码粟酒裂殖酵母苹果酸通透酶的MAE1基因在酿酒酵母中的表达显著增加了该酵母对L-苹果酸的摄取。在该菌株中,在pH 3.5(工业过程中遇到的)条件下,L-苹果酸的摄取涉及Mae1p介导的酸单阴离子形式的转运(表观动力学参数:Vmax = 8.7 nmol/mg/分钟;Km = 1.6 mM)以及一些未解离L-苹果酸的简单扩散(Kd = 0.057分钟-1)。由于总L-苹果酸转运仅涉及低水平的扩散,因此在重组菌株中对Mae1p通透酶进行了进一步表征。L-苹果酸转运是可逆的且具有累积性,并且依赖于单阴离子酸形式的跨膜梯度和质子动力的ΔpH成分。与L-苹果酸具有密切相关的空间占据的二羧酸,如马来酸、草酰乙酸、丙二酸、琥珀酸和富马酸,抑制L-苹果酸的摄取,表明这些化合物使用相同的载体。我们发现,提高外部pH直接抑制苹果酸摄取,导致较低的初始摄取速率和较低的底物积累水平。在粟酒裂殖酵母中,如内部酸化所示,质子移动伴随着苹果酸摄取,这与先前提出的质子/二羧酸机制一致。令人惊讶的是,在酿酒酵母中Mae1p介导的L-苹果酸导入过程中未观察到质子通量,并且细胞内pH保持恒定。这表明,在酿酒酵母中,要么存在质子逆流,要么Mae1p通透酶的功能不同于质子/二羧酸同向转运体。