Suppr超能文献

与工程改造的粟酒裂殖酵母相比,工程改造的酿酒酵母进行的苹果酸乳酸发酵。

Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe.

作者信息

Ansanay V, Dequin S, Camarasa C, Schaeffer V, Grivet J P, Blondin B, Salmon J M, Barre P

机构信息

IPV-Laboratoire de Microbiologie et Technologie des Fermentation, Montpellier, France.

出版信息

Yeast. 1996 Mar 15;12(3):215-25. doi: 10.1002/(SICI)1097-0061(19960315)12:3%3C215::AID-YEA903%3E3.0.CO;2-M.

Abstract

The ability of yeast strains to perform both alcoholic and malolactic fermentation in winemaking was studied with a view to achieving a better control of malolactic fermentation in enology. The malolactic gene of Lactococcus lactis (mleS) was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The heterologous protein is expressed at a high level in cell extracts of a S. cerevisiae strain expressing the gene mleS under the control of the alcohol dehydrogenase (ADH1) promoter on a multicopy plasmid. Malolactic enzyme specific activity is three times higher than in L. lactis extracts. Saccharomyces cerevisiae expressing the malolactic enzyme produces significant amounts of L-lactate during fermentation on glucose-rich medium in the presence of malic acid. Isotopic filiation was used to demonstrate that 75% of the L-lactate produced originates from endogenous L-malate and 25% from exogenous L-malate. Moreover, although a small amount of exogenous L-malate was degraded by S. cerevisiae transformed or not by mleS, all the exogenous degraded L-malate was converted into L-lactate via a malolactic reaction in the recombinant strain, providing evidence for very efficient competition of malolactic enzyme with the endogenous malic acid pathways. These results indicate that the sole limiting step for S. cerevisiae in achieving malolactic fermentation is in malate transport. This was confirmed using a different model, S. pombe, which efficiently degrades L-malate. Total malolactic fermentation was obtained in this strain, with most of the L-malate converted into L-lactate and CO2. Moreover, L-malate was used preferentially by the malolactic enzyme in this strain also.

摘要

为了更好地控制葡萄酒酿造中的苹果酸-乳酸发酵,研究了酵母菌株在酿酒过程中进行酒精发酵和苹果酸-乳酸发酵的能力。乳酸乳球菌的苹果酸-乳酸基因(mleS)在酿酒酵母和粟酒裂殖酵母中表达。在多拷贝质粒上,在酒精脱氢酶(ADH1)启动子控制下表达基因mleS的酿酒酵母菌株的细胞提取物中,异源蛋白高水平表达。苹果酸-乳酸酶的比活性比乳酸乳球菌提取物中的高3倍。表达苹果酸-乳酸酶的酿酒酵母在富含葡萄糖的培养基中、存在苹果酸的情况下发酵期间产生大量L-乳酸。同位素追踪用于证明所产生的L-乳酸中有75%源自内源性L-苹果酸,25%源自外源性L-苹果酸。此外,尽管无论是否用mleS转化,酿酒酵母都会降解少量外源性L-苹果酸,但在重组菌株中,所有被降解的外源性L-苹果酸都通过苹果酸-乳酸反应转化为L-乳酸,这为苹果酸-乳酸酶与内源性苹果酸途径的高效竞争提供了证据。这些结果表明,酿酒酵母实现苹果酸-乳酸发酵的唯一限制步骤在于苹果酸的转运。使用不同的模型粟酒裂殖酵母证实了这一点,该酵母能有效降解L-苹果酸。在该菌株中实现了完全的苹果酸-乳酸发酵,大多数L-苹果酸转化为L-乳酸和CO2。此外,该菌株中的苹果酸-乳酸酶也优先利用L-苹果酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验