Suppr超能文献

用于量化心房颤动组织以提高除颤效果的频域算法。

Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy.

作者信息

Everett T H, Kok L C, Vaughn R H, Moorman J R, Haines D E

机构信息

Department of Internal Medicine, University of Virginia Health System, Charlottesville 22908, USA.

出版信息

IEEE Trans Biomed Eng. 2001 Sep;48(9):969-78. doi: 10.1109/10.942586.

Abstract

We hypothesized that frequency domain analysis of an interatrial atrial fibrillation (AF) electrogram would show a correlation of the variance of the signal and the amplitude of harmonic peaks with the periodicity and morphology (organization) of the AF signal and defibrillation efficacy. We sought to develop an algorithm that would provide a high-resolution measurement of the changes in the spatiotemporal organization of AF. AF was initiated with burst atrial pacing in ten dogs. The atrial defibrillation threshold (ADFT50) was determined, and defibrillation was repeated at the ADFT50. Bipolar electrograms from the shocking electrodes were acquired immediately preshock, digitally filtered, and a FFT was performed. The organization index (OI) was calculated as the ratio of the area under the first four harmonic peaks to the total area of the spectrum. For a 4-s window, the mean OI was 0.505 +/- 0.087 for successful shocks, versus 0.352 +/- 0.068 for unsuccessful shocks (p < 0.001). Receiver operator characteristic (ROC) curve analysis was used to determine the optimal sampling window for predicting successful shocks. The area of the ROC curve was 0.8 for a 1-s window, and improved to 0.9 for a 4-s window. We conclude that the spectrum of an AF signal contains information relating to its organization, and can be used in predicting a successful defibrillation.

摘要

我们假设,心房颤动(AF)心内电图的频域分析将显示信号方差和谐波峰值幅度与AF信号的周期性和形态(组织)以及除颤效果之间的相关性。我们试图开发一种算法,该算法能够对AF的时空组织变化进行高分辨率测量。通过对十只犬进行短阵心房起搏来诱发AF。测定心房除颤阈值(ADFT50),并在ADFT50时重复进行除颤。在电击前即刻采集来自电击电极的双极电图,进行数字滤波,并执行快速傅里叶变换(FFT)。组织指数(OI)计算为前四个谐波峰值下的面积与频谱总面积之比。对于一个4秒的窗口,成功电击时的平均OI为0.505±0.087,而失败电击时为0.352±0.068(p<0.001)。采用受试者工作特征(ROC)曲线分析来确定预测成功电击的最佳采样窗口。对于1秒的窗口,ROC曲线面积为0.8,对于4秒的窗口则提高到0.9。我们得出结论,AF信号的频谱包含与其组织相关的信息,可用于预测成功除颤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验