Suppr超能文献

纤维母细胞类型及其密度对心房颤动动力学的影响:一项计算机模拟研究。

The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study.

机构信息

Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia.

Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín 050010, Colombia.

出版信息

Cells. 2021 Oct 15;10(10):2769. doi: 10.3390/cells10102769.

Abstract

Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF.

摘要

心房颤动(AF)中的重构强调了心房中的电学和结构变化,其中纤维化是心律失常结构改变的标志。纤维化是 AF 基质的一个重要特征,可导致异常传导,并因此导致机械功能障碍。纤维化过程包括纤维化细胞的存在,包括成纤维细胞、肌成纤维细胞和纤维细胞,它们在纤颤动力学中起着重要作用。这项工作评估了弥漫性纤维化密度和三种纤维化细胞混合存在对持续性 AF 动力学的影响。为此,将三种纤维化细胞与人心房的 3D 现实模型中的心肌细胞进行电耦合。根据弥漫性纤维化表示,在左心房中实现了低(6.25%)和高(25%)纤维化密度。我们分析了动作电位持续时间、传导速度和纤颤传导模式。此外,在 50 个虚拟电图中进行了频率分析。测试的纤维化配置导致传导速度显着降低,其中在高纤维化密度下观察到更大的影响(在纤维细胞配置中减少了 82%)。增加纤维化密度会加剧对多次折返、曲折传播和纤颤传导中的混沌活动的易感性。在高纤维化密度和纤维细胞时观察到最复杂的传播模式,纤维细胞是具有最大致心律失常作用的细胞。对于所有纤维化配置都可以观察到从左到右的主导频率梯度,其中纤维细胞在高密度下的配置产生最显着的梯度(高达 4.5 Hz)。这些结果表明,不同纤维化细胞类型及其密度在弥漫性纤维化中对持续性 AF 期间混沌传播模式的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e6/8534881/fc59f7f12de9/cells-10-02769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验