Tranquillo R T
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455.
ASGSB Bull. 1991 Jul;4(2):75-85.
Two central features of polymorphonuclear neutrophil leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, neutrophils exhibit a persistent random walk, with a characteristic directional persistence time between significant changes in direction. In attractant concentration gradients, they demonstrate a biased random walk, with an orientation bias characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to attractant requires that both persistence and bias be explained within a unifying framework. We offer the hypothesis that "noise" in the cellular chemical signal detection/response process can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell chemosensory movement based on kinetic fluctuations in attractant-receptor binding. This model is capable of simulating cell paths observed experimentally in uniform concentrations as well as concentration gradients. It also quantitatively predicts both persistence time in uniform attractant concentrations and orientation bias in gradients, and the predictions compare favorably to data for neutrophils responding to chemotactic peptide. Further, the model analysis elucidates how persistence time and orientation bias depend on the model parameters associated with receptor binding, receptor signal transduction, and the cell turning response. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.
多形核中性粒细胞化学感应运动行为的两个核心特征需要从基础理论层面进行理解。在趋化因子浓度均匀的环境中,中性粒细胞呈现持续的随机游动,在方向发生显著变化之间具有特定的方向持续时间。在趋化因子浓度梯度环境中,它们表现出有偏随机游动,其方向偏好表征了沿梯度向上移动的细胞比例。要全面理解细胞对趋化因子的运动反应,需要在一个统一的框架内解释持续性和偏好性这两个方面。我们提出一个假设,即细胞化学信号检测/反应过程中的“噪声”可以同时解释这两个关键现象。具体而言,我们基于趋化因子-受体结合的动力学涨落,开发了一个细胞化学感应运动的随机数学模型。该模型能够模拟在均匀浓度以及浓度梯度环境下实验观察到的细胞路径。它还能定量预测在均匀趋化因子浓度下的持续时间以及在浓度梯度下的方向偏好,并且这些预测结果与中性粒细胞对趋化肽反应的数据吻合良好。此外,模型分析阐明了持续时间和方向偏好如何依赖于与受体结合、受体信号转导以及细胞转向反应相关的模型参数。因此,信号“噪声”的概念能够定量地统一白细胞随机运动和趋化性的主要特征。在均匀环境中,足以解释观察到的转向频率的相同水平的噪声,同时又小到足以允许在浓度梯度中观察到的方向偏好程度。