Tranquillo R T, Lauffenburger D A, Zigmond S H
Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104.
J Cell Biol. 1988 Feb;106(2):303-9. doi: 10.1083/jcb.106.2.303.
Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.
多形核白细胞化学感应运动行为的两个核心特征需要从基础理论层面进行理解。在趋化因子浓度均匀的情况下,这些细胞呈现持续的随机游走,在方向发生显著变化之间有一个特征性的“持续时间”。在趋化因子浓度梯度中,它们表现出有偏的随机游走,“定向偏差”表征了沿梯度向上移动的细胞比例。细胞对趋化因子运动反应的连贯图景要求在一个统一框架内解释持续时间和定向偏差。在本文中,我们提出细胞信号感知/反应机制中的“噪声”可能同时解释这两个关键现象。具体而言,我们基于趋化因子/受体结合的动力学波动,为细胞运动建立了一个随机数学模型。该模型能够在趋化因子浓度均匀以及存在趋化因子浓度梯度的条件下,模拟出与实验观察相似的细胞路径。此外,该模型能够定量预测细胞的持续时间以及定向偏差对梯度大小的依赖性。因此,信号“噪声”的概念能够定量地统一白细胞随机运动和趋化性的主要特征。在均匀环境中,足以解释观察到的转向频率的相同水平的噪声,同时又小到足以允许在梯度中观察到的定向偏差程度。