Zhang Y, Stolper E M, Wasserburg G J
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, USA.
Earth Planet Sci Lett. 1991;103:228-40. doi: 10.1016/0012-821x(91)90163-c.
An important but poorly understood factor that affects diffusion rates is the role of speciation during diffusion of a multi-species component. The diffusion of such a component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. These complexities can be treated by a diffusion equation that incorporates the diffusive fluxes of all species contributing to the concentration of the component. The effects of speciation on the diffusion of the component can be investigated experimentally in some simple cases by measuring concentration profiles of all species developed during diffusion experiments or by studying some of their other consequences. Experimental data on water diffusion in rhyolitic glasses indicate that although dissolved water is present as two species, H2O molecules and OH groups, molecular H2O is the dominant diffusing species at very low to high water concentrations. This explains the apparently complex behavior of water diffusion. Experimental data on oxygen diffusion in some silicates using 18O tracers in the form of H2(18O) are consistent with the idea that 18O transport is dominated by diffusion of H2O molecules even at lower water contents (ppm or less). This explains why oxygen transport depends on the presence of water and generally depends on water fugacity linearly. For this mode of oxygen transport, there is a simple theoretical relationship between the effective total oxygen diffusion coefficient and the total water diffusion coefficient that is a function of only the water concentration of the silicate at low water content. This relationship appears to describe quantitatively the existing data over a wide range in water contents and diffusion coefficients in several phases.
一个影响扩散速率但却鲜为人知的重要因素是多物种组分扩散过程中的物种形成作用。这种组分的扩散因各物种不同的扩散系数以及物种间的相互转化反应而变得复杂。这些复杂性可以通过一个扩散方程来处理,该方程纳入了对该组分浓度有贡献的所有物种的扩散通量。在一些简单情况下,可以通过测量扩散实验过程中所有物种形成的浓度分布,或者通过研究它们的其他一些后果,来实验研究物种形成对该组分扩散的影响。流纹岩玻璃中水分扩散的实验数据表明,尽管溶解水以两种物种,即H₂O分子和OH基团的形式存在,但在极低到高水浓度范围内,分子态H₂O是主要的扩散物种。这解释了水扩散看似复杂的行为。在一些硅酸盐中使用H₂(¹⁸O)形式的¹⁸O示踪剂进行的氧扩散实验数据与以下观点一致,即即使在较低水含量(百万分之一或更低)时,¹⁸O的传输也主要由H₂O分子的扩散主导。这解释了为什么氧的传输依赖于水的存在,并且通常与水的逸度呈线性关系。对于这种氧传输模式,在低水含量时,有效总氧扩散系数与总水扩散系数之间存在一个简单的理论关系,该关系仅是硅酸盐中水浓度的函数。这种关系似乎在很宽的水含量和扩散系数范围内,定量地描述了几个相中的现有数据。