Allamandola L J, Bernstein M P, Sandford S A, Walker R L
Astrochemistry Laboratory, NASA Ames Research Center, Mountain View, CA 94035-1000, USA.
Space Sci Rev. 1999;90(1-2):219-32. doi: 10.1007/978-94-011-4211-3_20.
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.
红外观测与逼真的实验室模拟相结合,彻底改变了我们对星际冰和尘埃(彗星的构成要素)的理解。分子云中的冰主要由非常简单的分子组成,如水(H₂O)、甲醇(CH₃OH)、氨(NH₃)、一氧化碳(CO)、二氧化碳(CO₂),可能还有甲醛(H₂CO)和氢气(H₂)。也存在更复杂的物种,包括腈、酮和酯,但浓度较低。本文综述了这些物质以及丰富的、富含碳的星际多环芳烃(PAH)的证据。星际/彗星前冰成分的其他可能贡献者包括气相分子的吸积和原位光化学过程。由于其丰度较低,简单气相物种的吸积在决定冰成分的过程中被证明是最不重要的。另一方面,光化学过程在推动尘埃演化和次要物种的组成方面确实起着重要作用。对逼真的实验室类似物进行紫外光解很容易产生氢气(H₂)、甲醛(H₂CO)、二氧化碳(CO₂)、一氧化碳(CO)、甲烷(CH₄)、甲酰基(HCO)以及中等复杂的有机分子:乙醇(CH₃CH₂OH)、甲酰胺(HC(=O)NH₂)、乙酰胺(CH₃C(=O)NH₂)、R-CN(腈)和六亚甲基四胺(HMT,C₆H₁₂N₄),以及更复杂的物种,包括酰胺、酮和聚甲醛(POM)。冰中包含多环芳烃会产生许多与陨石中发现的类似的物种,包括芳香醇、醌和醚。光子辅助的多环芳烃-冰氘交换也会发生。所有这些物种都很容易形成,因此很可能是彗星的组成成分。