Gao H, Ayyaswamy P S, Ducheyne P
Dept. of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia 19104, USA.
Microgravity Sci Technol. 1997;10(3):154-65.
Rotating-wall vessel (RWV), a low-shear, low turbulence microcarrier culture system provides a simulated microgravity environment suitable for 3-dimensional tissue culture. In this paper, the motion of a microcarrier particle in the rotating fluid has been analytically/numerically studied. If the microcarrier is less dense than the surrounding liquid medium, it eventually migrates towards an equilibrium state in the fluid. This state corresponds to a stationary location in the inertial frame of reference or equivalently, a circular orbit about the rotational axis in a rotating frame. If the particle is denser, it may move away indefinitely to reach or collide with the outer wall of the rotating vessel (outer boundary of the rotating fluid). Such a collision may damage the cells and could be undesirable for tissue culture. We have calculated migration times for a denser microcarrier to reach the outer wall of the vessel. Several factors--rotational speed, fluid viscosity, density difference between that of the microcarrier and the fluid, microcarrier radius, and the initial position of the microcarrier--were found to affect this migration time. We have also evaluated the variation of the fluid shear stress on the microcarrier surface. Decreasing the density difference between the microcarrier and the fluid, and decreasing the size of the microcarrier, can both decrease the maximum shear stress. The results for a solid, a hollow, and a hollow-porous microcarrier show that with a denser microcarrier material, the hollow or hollow-porous spherical microcarriers are preferable in order to increase the suspension time and decrease the maximum shear stress. The results of this study are thought to be useful for the development of optimal conditions for cell growth and metabolism in RWVs.
旋转壁式生物反应器(RWV)是一种低剪切、低湍流的微载体培养系统,可提供适合三维组织培养的模拟微重力环境。本文对微载体颗粒在旋转流体中的运动进行了分析/数值研究。如果微载体的密度小于周围的液体介质,它最终会向流体中的平衡状态迁移。这种状态对应于惯性参考系中的一个固定位置,或者等效地,在旋转参考系中围绕旋转轴的一个圆形轨道。如果颗粒密度较大,它可能会无限远离,到达或碰撞旋转容器的外壁(旋转流体的外边界)。这样的碰撞可能会损害细胞,对于组织培养来说可能是不利的。我们计算了密度较大的微载体到达容器外壁的迁移时间。发现几个因素——转速、流体粘度、微载体与流体的密度差、微载体半径以及微载体的初始位置——会影响这个迁移时间。我们还评估了微载体表面流体剪切应力的变化。减小微载体与流体之间的密度差以及减小微载体的尺寸,都可以降低最大剪切应力。实心、空心和空心多孔微载体的结果表明,对于密度较大的微载体材料,空心或空心多孔球形微载体更可取,以便增加悬浮时间并降低最大剪切应力。这项研究的结果被认为对开发旋转壁式生物反应器中细胞生长和代谢的最佳条件有用。