Suppr超能文献

便携式UNIX编程系统(PUPS)和康托尔:一个用于复杂神经生物学数据动态表示与分析的计算环境。

The portable UNIX programming system (PUPS) and CANTOR: a computational environment for dynamical representation and analysis of complex neurobiological data.

作者信息

O'Neill M A, Hilgetag C C

机构信息

Bee Systematics and Biology Unit, Hope Entomological Collections, Parks Road, Oxford OX1 3PW, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1259-76. doi: 10.1098/rstb.2001.0912.

Abstract

Many problems in analytical biology, such as the classification of organisms, the modelling of macromolecules, or the structural analysis of metabolic or neural networks, involve complex relational data. Here, we describe a software environment, the portable UNIX programming system (PUPS), which has been developed to allow efficient computational representation and analysis of such data. The system can also be used as a general development tool for database and classification applications. As the complexity of analytical biology problems may lead to computation times of several days or weeks even on powerful computer hardware, the PUPS environment gives support for persistent computations by providing mechanisms for dynamic interaction and homeostatic protection of processes. Biological objects and their interrelations are also represented in a homeostatic way in PUPS. Object relationships are maintained and updated by the objects themselves, thus providing a flexible, scalable and current data representation. Based on the PUPS environment, we have developed an optimization package, CANTOR, which can be applied to a wide range of relational data and which has been employed in different analyses of neuroanatomical connectivity. The CANTOR package makes use of the PUPS system features by modifying candidate arrangements of objects within the system's database. This restructuring is carried out via optimization algorithms that are based on user-defined cost functions, thus providing flexible and powerful tools for the structural analysis of the database content. The use of stochastic optimization also enables the CANTOR system to deal effectively with incomplete and inconsistent data. Prototypical forms of PUPS and CANTOR have been coded and used successfully in the analysis of anatomical and functional mammalian brain connectivity, involving complex and inconsistent experimental data. In addition, PUPS has been used for solving multivariate engineering optimization problems and to implement the digital identification system (DAISY), a system for the automated classification of biological objects. PUPS is implemented in ANSI-C under the POSIX.1 standard and is to a great extent architecture- and operating-system independent. The software is supported by systems libraries that allow multi-threading (the concurrent processing of several database operations), as well as the distribution of the dynamic data objects and library operations over clusters of computers. These attributes make the system easily scalable, and in principle allow the representation and analysis of arbitrarily large sets of relational data. PUPS and CANTOR are freely distributed (http://www.pups.org.uk) as open-source software under the GNU license agreement.

摘要

分析生物学中的许多问题,如生物体分类、大分子建模或代谢或神经网络的结构分析,都涉及复杂的关系数据。在此,我们描述一种软件环境——便携式UNIX编程系统(PUPS),它的开发旨在实现此类数据的高效计算表示与分析。该系统还可作为数据库和分类应用的通用开发工具。由于分析生物学问题的复杂性,即便使用强大的计算机硬件,计算时间也可能长达数天或数周,因此PUPS环境通过提供进程动态交互和稳态保护机制,为持续计算提供支持。生物对象及其相互关系在PUPS中也以稳态方式呈现。对象关系由对象自身维护和更新,从而提供灵活、可扩展且最新的数据表示。基于PUPS环境,我们开发了一个优化包CANTOR,它可应用于广泛的关系数据,并已用于神经解剖连接性的不同分析。CANTOR包通过修改系统数据库中对象的候选排列来利用PUPS系统功能。这种重组通过基于用户定义成本函数的优化算法来执行,从而为数据库内容的结构分析提供灵活而强大的工具。随机优化的使用还使CANTOR系统能够有效处理不完整和不一致的数据。PUPS和CANTOR的原型形式已编码并成功用于分析哺乳动物大脑的解剖和功能连接性,涉及复杂且不一致的实验数据。此外,PUPS已用于解决多变量工程优化问题,并实现数字识别系统(DAISY),这是一种生物对象自动分类系统。PUPS是根据POSIX.1标准用ANSI-C实现的,在很大程度上与体系结构和操作系统无关。该软件由系统库支持,这些库允许多线程(并发处理多个数据库操作),以及在计算机集群上分布动态数据对象和库操作。这些特性使系统易于扩展,原则上允许表示和分析任意大量的关系数据。PUPS和CANTOR根据GNU许可协议作为开源软件免费分发(http://www.pups.org.uk)。

相似文献

6
MARVIN: a medical research application framework based on open source software.MARVIN:一个基于开源软件的医学研究应用框架。
Comput Methods Programs Biomed. 2008 Aug;91(2):165-74. doi: 10.1016/j.cmpb.2008.04.007. Epub 2008 Jun 9.
7
TOPP--the OpenMS proteomics pipeline.TOPP——开放式质谱蛋白质组学流程
Bioinformatics. 2007 Jan 15;23(2):e191-7. doi: 10.1093/bioinformatics/btl299.
9
BIAS: Bioinformatics Integrated Application Software.BIAS:生物信息学集成应用软件。
Bioinformatics. 2005 Apr 15;21(8):1745-6. doi: 10.1093/bioinformatics/bti170. Epub 2004 Nov 30.

引用本文的文献

2
Data mining through simulation.通过模拟进行数据挖掘。
Methods Mol Biol. 2007;401:155-66. doi: 10.1007/978-1-59745-520-6_9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验