Kanzaki M, Pessin J E
Department of Physiology and Biophysics, the University of Iowa, Iowa City, Iowa 52242, USA.
J Biol Chem. 2001 Nov 9;276(45):42436-44. doi: 10.1074/jbc.M108297200. Epub 2001 Sep 6.
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process.
用罗丹明标记的鬼笔环肽对形态分化的3T3L1脂肪细胞进行染色,结果表明,F-肌动蛋白主要存在于质膜内表面(皮质肌动蛋白)并与之并列排列,少量应力纤维和/或褶皱肌动蛋白局限于与基质接触的细胞底部。用不同剂量的拉特罗毒素B或艰难梭菌毒素B(一种Rho家族小GTP结合蛋白毒素)破坏皮质肌动蛋白的程度与胰岛素刺激的葡萄糖摄取和GLUT4转位的抑制直接相关。皮质肌动蛋白网络的溶解对近端胰岛素受体信号事件没有显著影响,包括胰岛素受体自身磷酸化、胰岛素受体底物和Cbl的酪氨酸磷酸化或Akt的丝氨酸/苏氨酸磷酸化。然而,令人惊讶的是,用茉莉酸内酯稳定F-肌动蛋白也会导致胰岛素刺激的葡萄糖摄取和GLUT4转位呈剂量依赖性抑制。对肌动蛋白-黄色荧光蛋白进行体内延时共聚焦荧光显微镜观察表明,胰岛素刺激最初导致皮质肌动蛋白重塑,随后核周区域聚合肌动蛋白增加。重要的是,用拉特罗毒素B、艰难梭菌毒素B和茉莉酸内酯处理细胞可完全阻断胰岛素对皮质肌动蛋白重排的刺激。此外,显性干扰性TC10/T31N突变体的表达完全破坏了皮质肌动蛋白,并阻止了任何胰岛素刺激的肌动蛋白重塑。总之,这些数据表明,皮质肌动蛋白而非应力纤维、片状伪足或丝状伪足在胰岛素刺激的GLUT4转位中起重要调节作用。此外,皮质F-肌动蛋白并非以静态方式发挥作用(如屏障或支架),但胰岛素刺激的动态皮质肌动蛋白重塑对于GLUT4转位过程是必需的。