Springer B, Kidan Y G, Prammananan T, Ellrott K, Böttger E C, Sander P
Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
Antimicrob Agents Chemother. 2001 Oct;45(10):2877-84. doi: 10.1128/AAC.45.10.2877-2884.2001.
Chromosomally acquired streptomycin resistance is frequently due to mutations in the gene encoding the ribosomal protein S12, rpsL. The presence of several rRNA operons (rrn) and a single rpsL gene in most bacterial genomes prohibits the isolation of streptomycin-resistant mutants in which resistance is mediated by mutations in the 16S rRNA gene (rrs). Three strains were constructed in this investigation: Mycobacterium smegmatis rrnB, M. smegmatis rpsL(3+), and M. smegmatis rrnB rpsL(3+). M. smegmatis rrnB carries a single functional rrn operon, i.e., rrnA (comprised of 16S, 23S, and 5S rRNA genes) and a single rpsL+ gene; M. smegmatis rpsL(3+) is characterized by the presence of two rrn operons (rrnA and rrnB) and three rpsL+ genes; and M. smegmatis rrnB rpsL(3+) carries a single functional rrn operon (rrnA) and three rpsL+ genes. By genetically altering the number of rpsL and rrs alleles in the bacterial genome, mutations in rrs conferring streptomycin resistance could be selected, as revealed by analysis of streptomycin-resistant derivatives of M. smegmatis rrnB rpsL(3+). Besides mutations well known to confer streptomycin resistance, novel streptomycin resistance conferring mutations were isolated. Most of the mutations were found to map to a functional pseudoknot structure within the 530 loop region of the 16S rRNA. One of the mutations observed, i.e., 524G-->C, severely distorts the interaction between nucleotides 524G and 507C, a Watson-Crick interaction which has been thought to be essential for ribosome function. The use of the single rRNA allelic M. smegmatis strain should help to elucidate the principles of ribosome-drug interactions.
染色体获得性链霉素抗性通常是由于编码核糖体蛋白S12的基因(rpsL)发生突变所致。大多数细菌基因组中存在多个rRNA操纵子(rrn)和单个rpsL基因,这使得无法分离出由16S rRNA基因(rrs)突变介导抗性的链霉素抗性突变体。在本研究中构建了三株菌株:耻垢分枝杆菌rrnB、耻垢分枝杆菌rpsL(3+)和耻垢分枝杆菌rrnB rpsL(3+)。耻垢分枝杆菌rrnB携带单个功能性rrn操纵子,即rrnA(由16S、23S和5S rRNA基因组成)和单个rpsL+基因;耻垢分枝杆菌rpsL(3+)的特征是存在两个rrn操纵子(rrnA和rrnB)和三个rpsL+基因;耻垢分枝杆菌rrnB rpsL(3+)携带单个功能性rrn操纵子(rrnA)和三个rpsL+基因。通过基因改变细菌基因组中rpsL和rrs等位基因的数量,可以选择赋予链霉素抗性的rrs突变,耻垢分枝杆菌rrnB rpsL(3+)的链霉素抗性衍生物分析结果表明了这一点。除了已知赋予链霉素抗性的突变外,还分离出了新的赋予链霉素抗性的突变。发现大多数突变定位于16S rRNA的530环区域内的一个功能性假结结构。观察到的其中一个突变,即524G→C,严重扭曲了核苷酸524G和507C之间的相互作用,这是一种被认为对核糖体功能至关重要的沃森-克里克相互作用。使用单rRNA等位基因的耻垢分枝杆菌菌株应有助于阐明核糖体-药物相互作用的原理。