Tsutakawa S E, Morikawa K
Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nucleic Acids Res. 2001 Sep 15;29(18):3775-83. doi: 10.1093/nar/29.18.3775.
Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resembles these endonucleases in overall topology but also how Vsr diverges in terms of the detailed catalytic mechanism. A histidine and two metal-water clusters catalyze the phosphodiester cleavage. The mode of DNA damage recognition is also unique to Vsr. All other structurally characterized DNA damage-binding enzymes employ a nucleotide flipping mechanism for substrate recognition and for catalysis. Vsr, on the other hand, recognizes the TG mismatch as a wobble base pair and penetrates the DNA with three aromatic residues on one side of the mismatch. Thus, Vsr endonuclease provides important counterpoints in our understanding of endonucleolytic mechanisms and of damaged DNA recognition.
DNA修复中的核酸内切酶必须能够识别受损DNA并切割磷酸二酯主链。这些功能前提在极短片段修复(Vsr)核酸内切酶中通过一种常见的核酸内切酶拓扑结构得以体现,该拓扑结构经过调整以识别TG错配。与II型限制酶的结构和生化比较表明,Vsr在整体拓扑结构上与这些核酸内切酶相似,但在详细的催化机制方面也存在差异。一个组氨酸和两个金属-水簇催化磷酸二酯键的切割。DNA损伤识别模式也是Vsr所特有的。所有其他已进行结构表征的DNA损伤结合酶都采用核苷酸翻转机制进行底物识别和催化。另一方面,Vsr将TG错配识别为摆动碱基对,并通过错配一侧的三个芳香族残基穿透DNA。因此,Vsr核酸内切酶在我们对核酸内切机制和受损DNA识别的理解中提供了重要的对比点。